Analisis Nilai Kekerasan, Nilai Ketangguhan dan Struktur Mikro pada Multiple Repair dan Post Weld Heat Treatment (PWHT) Pengelasan HARDOX 500

Authors

  • Rocky Andiana Politeknik Perkapalan Negeri Surabaya
  • Mukhlis Politeknik Perkapalan Negeri Surabaya
  • Daffa Ramadhan Arya Wiratama Politeknik Perkapalan Negeri Surabaya
  • Zindhu Maulana Ahmad Putra Politeknik Perkapalan Negeri Surabaya

DOI:

https://doi.org/10.55826/xzgr4c53

Keywords:

HARDOX 500, Multiple Repair, PWHT, Kekerasan, ketangguhan

Abstract

Perbaikan berulang (multiple repair) pada baja HARDOX 500 menggunakan las berisiko menurunkan sifat mekanisnya. Penelitian menganalisis dampak dari jumlah repair dan durasi Post-Weld Heat Treatment (PWHT) terhadap sifat mekanis dan mikrostruktur. Metode penelitian adalah eksperimental dengan pengelasan Shielded Metal Arc Welding (SMAW) pada baja HARDOX 500. Variabel meliputi jumlah repair (tanpa repair, 1x, dan 2x) serta durasi holding time PWHT (30 dan 60 menit). Analisis dilakukan melalui uji kekerasan Vickers, uji impak Charpy, dan pengamatan struktur mikro. Hasil penelitian menunjukkan penambahan jumlah repair dapat meningkatkan nilai kekerasan namun menurunkan nilai ketangguhan material. Fenomena ini diatribusikan pada peningkatan masukan panas kumulatif dan formasi fasa bainit. Sebaliknya, proses PWHT dengan durasi holding time yang lebih lama (60 menit) terbukti efektif menurunkan nilai kekerasan, yang konsisten dengan terjadinya pertumbuhan butir dan pembentukan fasa ferit asikular yang lebih lunak. PWHT disimpulkan dapat memulihkan sebagian ketangguhan yang hilang akibat proses repair.

References

[1] Z. Zuo et al., “Microstructure, Fractography, and Mechanical Properties of Hardox 500 Steel TIG-Welded Joints by Using Different Filler Weld Wires,” Materials (Basel)., vol. 15, no. 22, pp. 4–6, 2022, doi: 10.3390/ma15228196.

[2] K. A. Nasra, Zuldesmi, and J. C. Kewas, “Pengaruh Post Weld Heat Treatment Terhadap Sifat Mekanik dan Struktur Mikro Baja Karbon ST42 dengan Pengelasa SMAW (Shielded Metal Arc Welding),” ACTUATOR J. Tek. …, vol. 1, no. 1, pp. 26–36, 2020, [Online]. Available: http://ejurnal-mapalus-unima.ac.id/index.php/actuator/article/view/115

[3] B. Gallina, L. Volcanoglo Biehl, J. L. Braz Medeiros, and J. de Souza, “The Influence of Different Heat Treatment Cycles on the Properties of the Steels HARDOX 500 and STRENX 700,” Rev. Lib., no. June, pp. 67–74, 2020, doi: 10.31514/rliberato.2020v21n35.p67.

[4] Z. Ahmad, M. Shahid, and M. Abbas, “Effect of Multiple Repair Welding on Mechanical Performance and Corrosion Resistance of Quenched and Tempered 30CrMnSiA Steel,” J. Brazilian Soc. Mech. Sci. Eng., vol. 39, no. 4, pp. 1233–1243, 2017, doi: 10.1007/s40430-016-0535-5.

[5] A. Arifah and S. Ruswanto, “Efek Post Weld Heat Treatment terhadap Sifat Mekanik AISI 316 Hasil Pengelasan GTAW,” J. Mek. Terap., vol. 1, no. 2, pp. 81–87, 2020, doi: 10.32722/jmt.v1i2.3354.

[6] M. Miftachul Munir, M. Syaiful Amri, I. Khoirul Rahmat, B. Bachtiar, and J. Victoria, “Analisis Metode Temper Bead Welding sebagai Alternatif Pengganti PWHT pada Pembuatan Sulphuric Acid Storage Tank,” J. Teknol. Marit., vol. 7, no. 1, pp. 13–24, 2024, doi: 10.35991/jtm.v7i1.6.

[7] X. Wang et al., “Study on the Grain Growth Behavior of Ultra-High Strength Stainless Steel,” Materials (Basel)., vol. 18, no. 5, 2025, doi: 10.3390/ma18051064.

[8] Hardox, Welding of HARDOX. 2023. [Online]. Available: ssab.com/support/steel-handbooks

[9] M. Alhassan and Y. Bashiru, “Carbon Equivalent Fundamentals in Evaluating the Weldability of Microalloy and Low Alloy Steels,” World J. Eng. Technol., vol. 09, no. 04, pp. 782–792, 2021, doi: 10.4236/wjet.2021.94054.

[10] A. P. Silva, T. Węgrzyn, T. Szymczak, B. Szczucka-Lasota, and B. Łazarz, “Hardox 450 Weld in Microstructural and Mechanical Approaches after Welding at Micro-Jet Cooling,” Materials (Basel)., vol. 15, no. 20, 2022, doi: 10.3390/ma15207118.

[11] SSAB, Welding of HARDOX. United States of America, 2024.

[12] K. R. Carpenter et al., “The Effects of Multiple Repair Welds on a Quenched and Tempered Steel for Naval Vessels,” Weld. World, 2021, [Online]. Available: https://hdl.handle.net/10779/uow.27811338.v1%0A%0A

[13] Ł. Konat, B. Białobrzeska, and P. Białek, “Effect of Welding Process on Microstructural and Mechanical Characteristics of Hardox 600 Steel,” Metals (Basel)., vol. 7, no. 9, 2020, doi: 10.3390/met7090349.

[14] S. Amri, “Analisis Multiple Repair pada Material Baja Karbon SA 333 Grade 6 dengan Proses GTAW Terhadap Kekerasan , Ketangguhan , dan Struktur Mikro,” J. Inovtek Polbeng, vol. 12, no. 1, pp. 15–22, 2022.

[15] TWI Global, “Are Quenched and Tempered (Q&T) Steels Readily Weldable?,” TWI Global. https://www.twi-global.com/technical-knowledge/faqs/faq-are-quenched-and-tempered-qt-steels-readily-weldable (accessed Sep. 10, 2025).

[16] S. F. Haider, M. M. Quazi, J. Bhatti, M. Nasir Bashir, and I. Ali, “Effect of Shielded Metal Arc Welding (SMAW) Parameters on Mechanical Properties of Low-Carbon, Mild and Stainless-Steel Welded Joints: A Review,” J. Adv. Technol. Eng. Res., vol. 5, no. 5, 2020, doi: 10.20474/jater-5.5.1.

[17] A. I. Rudskoi and S. G. Parshin, “Advanced Trends in Metallurgy and Weldability of High-Strength Cold-Resistant and Cryogenic Steels,” Metals (Basel)., vol. 11, no. 12, 2021, doi: 10.3390/met11121891.

[18] E. Harati, E. Harati, and U. Onochie, “Effect of Post-Weld Heat Treatment on Mechanical and Microstructural Properties of High Strength Steel Weld Metal,” Weld. Int., vol. 38, no. 6, pp. 422–429, 2024, doi: 10.1080/09507116.2024.2348008.

[19] D. Irawan and Herry Irawansyah, “The Effect of PWHT (Post Weld Heat Treatment) on SMAW on the Hardness and Bending Strength of St 37 Steel,” Rotary, vol. 6, no. 1, pp. 2721–6225, 2024, doi: 10.20527/jtamrotary.v7i.

[20] A. Ilić, L. Ivanović, B. Stojanović, D. Josifović, and E. Desnica, “Impact Toughness of High-Strength Low-Alloy Steel Welded Joints,” Appl. Eng. Lett., vol. 3, no. 3, pp. 98–104, 2018, doi: 10.18485/aeletters.2018.3.3.3.

[21] S. Q. Moinuddin et al., “Effect of Post-Weld Heat Treatment Cooling Strategies on Microstructure and Mechanical Properties of 0.3 C-Cr-Mo-V Steel Weld Joints Using GTAW Process,” Metals (Basel)., vol. 15, no. 5, 2025, doi: 10.3390/met15050496.

[22] K. Lamid, T. Akor, and L. Okan, “Influence of Additives on the Mechanical Characteristics of Hardox 450 Steel Welds,” Adeleke Univercity J. Eng. Technol., vol. 16, no. 16, pp. 136–142, 2025.

[23] A. S. Chaus, A. Kuhajdova, M. Marônek, and M. Dománková, “Effect of Multiple Local Repairs on Microstructure and Mechanical Properties of T24 Steel Welded Joint,” J. Mater. Eng. Perform., vol. 27, no. 6, pp. 3024–3034, 2020, doi: 10.1007/s11665-018-3387-6.

[24] J. Shi, Q. Pang, W. Li, Z. Xiang, and H. Qi, “Evolution of Inclusions in DH36 Grade Ship Plate Steel During High Heat Input Welding,” Sci. Rep., vol. 14, no. 1, pp. 1–10, 2024, doi: 10.1038/s41598-024-69907-1.

[25] A. dos R. de F. Neto, E. X. Dias, C. S. Fukugauchi, M. S. Martins, and M. dos S. Pereira, “Mechanical and Microstructural Characterization of Class 800 Complex Phase Steel before and after the Laser Welding Process,” J. Manuf. Mater. Process., vol. 8, no. 5, 2024, doi: 10.3390/jmmp8050232.

Downloads

Published

01-10-2025

How to Cite

[1]
“Analisis Nilai Kekerasan, Nilai Ketangguhan dan Struktur Mikro pada Multiple Repair dan Post Weld Heat Treatment (PWHT) Pengelasan HARDOX 500”, JTMIT, vol. 4, no. 3, pp. 1154–1166, Oct. 2025, doi: 10.55826/xzgr4c53.

Similar Articles

You may also start an advanced similarity search for this article.