Pengaruh Karakteristik Material Fly Ash PLTU Bolok Dan Fly Ash PLTU Timor-1 Terhadap Nilai Kuat Tekan Beton

Authors

  • Marthinus Alexander Bastian Program Studi D3 Teknik Sipil, Jurusan Teknik Sipil Politeknik Negeri Kupang, Indonesia
  • Anastasia Henderina Muda Program Studi D3 Teknik Sipil, Jurusan Teknik Sipil Politeknik Negeri Kupang, Indonesia
  • Lodia Semaya Amnifu Program Studi Teknik Perancangan Irigasi dan Penanganan Pantai, Jurusan Teknik Sipil Politeknik Negeri Kupang, Indonesia
  • Melkias Petrus Lily Program Studi D3 Teknik Sipil, Jurusan Teknik Sipil Politeknik Negeri Kupang, Indonesia

DOI:

https://doi.org/10.55826/jtmit.v4iI.1137

Keywords:

Fly Ash Bolok, Fly Ash Timor-1, Kuat Tekan Beton

Abstract

Limbah Pembangkit Listrik Tenaga Uap (PLTU) seperti fly ash sebagai material pengganti semen merupakan inovasi yang berdampak positif pada lingkungan sebab dapat mengurangi emisi karbon dioksida yang dihasilkan dari produksi semen. Fly ash sendiri merupakan material pozzolan yang tidak memiliki sifat seperti semen namun dengan ukuran yang halus dan mengandung silika (Si) serta alumina (Al) mampu bereaksi dengan kapur dan air sehingga menghasilkan suatu massa yang padat. Selain itu pemanfaatan limbah fly ash menjadi pilihan yang baik guna mengurangi biaya produksi beton karena ketergantungan pada semen portland yang cenderung lebih mahal. Kupang memiliki dua PLTU aktif yakni PLTU Bolok dan PLTU Timor-1. Penelitian ini bertujuan untuk pemeriksaan kualitas fly ash di daerah Kupang yang bersumber dari kedua PLTU tersebut. Pemeriksaan kualitas fly ash meliputi pengujian fisik yakni kehalusan, konsistensi normal, dan pengujian berat jenis. Pemeriksaan terhadap kekentalan dilakukan dengan pengujian slump untuk setiap variasi campuran fly ash Bolok dan Timor-1 dalam beton sebesar 3%, 6%, 9%, 12%, dan 15%. Hasil pengujian slump untuk spesimen kontrol adalah 8.83 cm dan penggunaan fly ash Bolok sebagai pengganti semen didapatkan nilai slump untuk setiap variasi yakni 6.5 cm, 4.63 cm, 4.57 cm, 4.53 cm, dan 3.90 cm. Sedangkan hasil pengujian nilai slump fly ash Timor-1 sebagai bahan pengganti semen untuk setiap variasi didapatkan 8.5 cm, 7.83 cm, 6.5 cm, 5.5 cm, dan 5 cm. Hasil ini menunjukan nilai slump semakin menurun seiring dengan penambahan variasi fly ash dalam beton. Pemeriksaan terhadap kuat tekan beton untuk spesimen kontrol adalah 27.35 MPa dan penggunaan fly ash Bolok sebagai pengganti semen untuk setiap variasi mendapatkan 26.75 MPa, 25.68 MPa, 24.41 MPa, 22.9 MPa, 21.9 MPa. Sedangkan hasil pengujian kuat tekan beton untuk penggunaan fly ash Timor-1 sebagai sebagai pengganti semen untuk setiap variasi mendapatkan 26.33 MPa, 25.78 MPa, 25.47 MPa, 24.99 MPa, 22.19 MPa. Hasil ini menunjukan peningkatan kadar fly ash Bolok dan Timor-1 dalam beton dapat menurunkan kuat tekan beton.

References

R.Bajpai, “Environmental impact assessment of fly ash and silica fume-based geopolymer concrete,” J. Clean. Prod., vol. 254, 2020, doi: 10.1016/j.jclepro.2020.120147.

Y.Zhang, “Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives,” 2021. doi: 10.1016/j.jhazmat.2021.125132.

M.Amran, “Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties,” 2021. doi: 10.1016/j.conbuildmat.2020.121857.

P.Zhang, “Properties of fresh and hardened fly ash/slag-based geopolymer concrete: A review,” 2020. doi: 10.1016/j.jclepro.2020.122389.

Y.Wang, “Effects of Si/Al ratio on the efflorescence and properties of fly ash-based geopolymer,” J. Clean. Prod., vol. 244, 2020, doi: 10.1016/j.jclepro.2019.118852.

H.Song, “Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms,” Constr. Build. Mater., vol. 308, 2021, doi: 10.1016/j.conbuildmat.2021.125021.

P.Nuaklong, “Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete,” J. Clean. Prod., vol. 252, 2020, doi: 10.1016/j.jclepro.2019.119797.

M.Shariati, “Prediction of concrete strength in the presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm),” Smart Struct. Syst., vol. 25, no. 2, pp. 183–195, 2020, doi: 10.12989/sss.2020.25.2.183.

D. K. I.Jaf, “Machine learning techniques and multi-scale models to evaluate the impact of silicon dioxide (SiO2) and calcium oxide (CaO) in fly ash on the compressive strength of green concrete,” Constr. Build. Mater., vol. 400, 2023, doi: 10.1016/j.conbuildmat.2023.132604.

A.Ahmad, “Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques,” Case Stud. Constr. Mater., vol. 16, 2022, doi: 10.1016/j.cscm.2021.e00840.

N.Wang, “Leachability and adverse effects of coal fly ash: A review,” 2020. doi: 10.1016/j.jhazmat.2020.122725.

J.Liu, “Utilisation of municipal solid waste incinerator (MSWI) fly ash with metakaolin for preparation of alkali-activated cementitious material,” J. Hazard. Mater., vol. 402, 2021, doi: 10.1016/j.jhazmat.2020.123451.

Z.Zhang, “Eco-friendly high-strength, high-ductility engineered cementitious composites (ECC) with fly ash substitution by rice husk ash,” Cem. Concr. Res., vol. 137, 2020, doi: 10.1016/j.cemconres.2020.106200.

B.Bai, “A high-strength red mud–fly ash geopolymer and the implications of curing temperature,” Powder Technol., vol. 416, 2023, doi: 10.1016/j.powtec.2023.118242.

S. K.Behera, “Utilisation of mill tailings, fly ash, and slag as mine paste backfill material: Review and future perspective,” 2021. doi: 10.1016/j.conbuildmat.2021.125120.

B.Sun, “A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials,” 2022. doi: 10.1016/j.conbuildmat.2022.126843.

Y.Xue, “Detoxification, solidification and recycling of municipal solid waste incineration fly ash: A review,” 2021. doi: 10.1016/j.cej.2021.130349.

Z.Guo, “Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume,” Constr. Build. Mater., vol. 231, 2020, doi: 10.1016/j.conbuildmat.2019.117115.

I.VJoseph, “Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash,” J. Environ. Chem. Eng., vol. 8, no. 4, 2020, doi: 10.1016/j.jece.2020.103895.

S. K.John, “Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: A review,” Constr. Build. Mater., vol. 280, 2021, doi: 10.1016/j.conbuildmat.2021.122443.

L. A.Qureshi, “Combined effects of supplementary cementitious materials (silica fume, GGBS, fly ash and rice husk ash) and steel fibre on the hardened properties of recycled aggregate concrete,” Constr. Build. Mater., vol. 263, 2020, doi: 10.1016/j.conbuildmat.2020.120636.

K. T.Nguyen, “Analysing the compressive strength of green fly ash-based geopolymer concrete using experiment and machine learning approaches,” Constr. Build. Mater., vol. 247, 2020, doi: 10.1016/j.conbuildmat.2020.118581.

A.Ahmad, “Prediction of compressive strength of fly ash-based concrete using individual and ensemble algorithms,” Materials (Basel), vol. 14, no. 4, pp. 1–21, 2021, doi: 10.3390/ma14040794.

U. O.Aigbe, “Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review,” 2021. doi: 10.1016/j.jmrt.2021.07.140.

S. S. Alterary, “Fly ash properties, characterisation, and applications: A review,” 2021. doi: 10.1016/j.jksus.2021.101536.

C.Fan, “A comparative study on solidification/stabilisation characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash,” J. Clean. Prod., vol. 319, 2021, doi: 10.1016/j.jclepro.2021.128790.

A.Noushini, “Chloride diffusion resistance and chloride binding capacity of fly ash-based geopolymer concrete,” Cem. Concr. Compos., vol. 105, 2020, doi: 10.1016/j.cemconcomp.2019.04.006.

D. K.Nayak, “Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies,” 2022. doi: 10.1016/j.clema.2022.100143.

X. X.Jiang, “A laboratory investigation of steel to fly ash-based geopolymer paste bonding behaviour after exposure to elevated temperatures,” Constr. Build. Mater., vol. 254, 2020, doi: 10.1016/j.conbuildmat.2020.119267.

Downloads

Published

02-03-2025

How to Cite

[1]
Marthinus Alexander Bastian, Anastasia Henderina Muda, Lodia Semaya Amnifu, and Melkias Petrus Lily, “Pengaruh Karakteristik Material Fly Ash PLTU Bolok Dan Fly Ash PLTU Timor-1 Terhadap Nilai Kuat Tekan Beton”, JTMIT, vol. 4, no. I, pp. 260–266, Mar. 2025.