Optimasi Histeresis Smart Relay Zelio pada Sistem Pompa Booster untuk Peningkatan Efisiensi Energi dan Kualitas Kinerja Cycling
DOI:
https://doi.org/10.55826/jtmit.v4i4.1362Keywords:
Efisiensi Energi, Histeresis, Pompa Booster, Smart Relay Zelio, Sistem JoggingAbstract
Stabilitas tekanan distribusi air bersih merupakan tantangan krusial dalam pengelolaan infrastruktur gedung bertingkat, di mana tekanan seringkali jatuh di bawah ambang batas operasional 2 bar. Penelitian ini bertujuan merancang sistem kendali pompa booster yang optimal untuk mengatasi inefisiensi energi dan ketidakstabilan tersebut. Metode yang diterapkan adalah perancangan panel kontrol dengan sistem jogging tiga pompa yang dikendalikan oleh Smart Relay Zelio dan sensor Pressure Switch Digital. Kebaruan penelitian ini terletak pada penerapan optimasi histeresis sebesar 1 bar pada sistem Zelio tiga pompa yang belum pernah diuji sebelumnya, guna meminimalkan frekuensi cycling dan mencegah fenomena chattering. Berdasarkan pengujian komparatif selama 9 jam, sistem yang diusulkan berhasil menurunkan konsumsi energi total dari 48,97 kWh (sistem konvensional) menjadi 32,88 kWh. Hal ini setara dengan penghematan energi sebesar 32,86%. Selain efisiensi, sistem ini terbukti menyeimbangkan beban kerja antar pompa secara otomatis melalui algoritma jogging. Kontribusi penelitian ini adalah penyediaan strategi kendali otomatis berbasis Smart Relay yang terbukti handal, stabil, dan hemat energi untuk manajemen utilitas bangunan modern.
References
[1] P. Saksono, “Analisa Efisiensi Pompa Centrifugal Pada Instalasi Pengolahan Air Kampung Damai Balikpapan,” Jurnal Teknik Mesin Universitas Balikpapan, vol. 12, no. 1, pp. 1–8, 2010.
[2] S. Sarjito and W. A. Siswanto, Mekanika dan Dinamika Fluida. Surakarta: Muhammadiyah University Press, 2018.
[3] M. S. Martins, “Energy efficiency indicators for water pumping systems in multifamily buildings,” Energy Build, vol. 250, p. 111285, 2021, doi: 10.1016/j.enbuild.2021.111285.
[4] D. Kaya, F. Çanka, K. Hasan, and H. Öztürk, Energy Management and Energy Efficiency in Industry: Practical Examples. Cham: Springer, 2021. doi: 10.1007/978-3-030-74556-9.
[5] S. R. Pendem and S. Mikkili, “Reduction of current harmonics in BLDC motors using the proposed sigmoid trapezoidal current hysteresis control,” Energies (Basel), vol. 16, no. 7, p. 355, 2023, doi: 10.3390/en16070355.
[6] C. Maier and G. Schlager, “Advanced hysteresis control of brushless DC motors for pumping applications,” Journal of Electrical Engineering, vol. 73, no. 1, pp. 45–52, 2022, doi: 10.2478/jee-2022-0006.
[7] T. O. Andersen and M. Hansen, “Hysteresis control in pump-controlled systems—A way to reduce mode-switch oscillations in closed and open circuits,” Energies (Basel), vol. 15, no. 2, p. 424, 2022, doi: 10.3390/en15020424.
[8] Z. Gao, “Adaptive sliding-mode with hysteresis control strategy for simple multi-mode hybrid energy storage system,” J Power Sources, vol. 343, pp. 1–9, 2017, doi: 10.1016/j.jpowsour.2017.01.076.
[9] Mastur and Warso, “Pengaruh Putaran Terhadap Pompa Sentrifugal Pada Rangkaian Seri Dan Paralel,” in Prosiding Senatek Fakultas Teknik, Universitas Muhammadiyah Purwokerto, 2015, pp. 55–60.
[10] I. Febrianto, M. Khabib, and B. S. Nugraha, “Perancangan Sistem Pompa Paralel Dengan Daya Bervariasi Untuk Meningkatkan Kapasitas Air,” Jurnal Crankshaft, vol. 3, no. 1, pp. 19–28, 2020, doi: 10.24176/crankshaft.v3i1.4688.
[11] Supardi and M. M. Renwarin, “Pengaruh Variasi Debit Aliran Dan Pipa Isap (Section) Terhadap Karakteristik Pompa Sentrifugal Yang Dioperasikan Secara Paralel,” Mekanika Jurnal Teknik Mesin, vol. 1, no. 1, pp. 1–9, 2015.
[12] A. T. B. Pratomo, H. Ghazidin, and F. M. Kuswa, “Rancangan sistem kontrol pompa menggunakan smart relay pada peralatan uji umur filter,” in TECHNOPEX-2018 Institut Teknologi Indonesia, 2018, pp. 236–241.
[13] H. Luthfiyah and T. Soehartanto, “Perancangan Switching Control Pada Paralel Pump Submersiable Di Sumur Intake Instalasi Pengolahan Air (IPA) PDAM Gresik,” Jurnal Teknik ITS, 2010.
[14] I. Setiadi and I. Kustianto, “Otomatisasi Kontrol Pompa Ultrafiltrasi dan Pompa Tekanan Tinggi Reverse Osmosis pada Unit Air Siap Minum menggunakan Schneider Zelio Smart Relay,” Jurnal Rekayasa Lingkungan, vol. 14, no. 1, pp. 49–59, 2021, doi: 10.29122/jrl.v14i1.4447.
[15] H. I. L. Hasanah, “Automatisasi Pompa Irigasi pada Sistem Irigasi Tetes Berbasis Mikrokontroller Arduino Uno,” ARZUSIN, vol. 2, no. 6, pp. 520–531, 2022.
[16] A. A. Rafiq, “Optimalisasi Smart Relay Zelio sebagai Kontroler Lampu Penerangan Jalan Umum,” J Teknol, vol. 12, no. 2, pp. 91–98, 2020, doi: 10.24853/jurtek.12.2.91-98.
[17] I. Setiadi and J. Prayitno, “Smart relay-based control system for reverse osmosis drinking water treatment,” Indonesian Journal of Health Science Management, vol. 12, no. 2, pp. 175–184, 2023.
[18] C. Dinis and G. Popa, “Automation heating and pumping for water using Zelio PLC,” in Proc. 10th Int. Symp. Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 2018, pp. 345–348. doi: 10.1109/ATEE.2017.7905132.
[19] M. Suhendar and M. Hariansyah, “Rancangan Smart Relay Zelio pada Pengoperasian Pompa Air Bersih Gedung Bertingkat,” Jurnal Elektro Universitas Pakuan, vol. 5, no. 2, 2020.
[20] T. A. T. Olabisi, N. B. Yahya, and R. T. A. Adewale, “Development of an Energy Efficient Automated Water Pumping System Using Programmable Logic Controller (PLC),” in IOP Conference Series: Earth and Environmental Science, 2023, p. 012022. doi: 10.1088/1755-1315/1135/1/012022.
[21] A. S. Putra and H. Wibowo, “Simulation of water supply pump system with PLC based control for high-rise buildings,” in Proc. SCITEPRESS, 2022, pp. 91–98. doi: 10.5220/0010945200003260.
[22] C. P. Sanyoto, J. A. F. A. W. Pratama, and R. Z. Ramadhan, “Analisis Unjuk Kerja Pompa Sentrifugal dengan Variasi Diameter Pipa Hisap,” Jurnal Ilmiah Teknik Mesin, vol. 8, no. 1, pp. 29–38, 2020.
[23] W. B. Jauhari, M. B. R. S. Siregar, and M. I. H. S. Nasution, “Analisis Kinerja Pompa Sentrifugal Yang Dirangkai Secara Paralel,” Jurnal Rekayasa Mesin, vol. 8, no. 1, pp. 7–12, 2023.
[24] J. Wang, X. Luo, and H. Liu, “Hysteresis characteristic in the hump region of a pump-turbine model,” Renew Energy, vol. 183, pp. 1–10, 2022, doi: 10.1016/j.renene.2021.10.088.
[25] X. Zhang, G. Zhang, and Z. Wu, “Energy-efficient scheduling of multiple pumps in water distribution systems via a modified particle swarm optimization,” Water (Basel), vol. 15, no. 3, p. 488, 2023, doi: 10.3390/w15030488.
[26] S. Yuan and X. Gong, “Optimization of centrifugal pump diffuser for energy saving using modified particle swarm algorithm,” Renew Energy, vol. 185, pp. 120–131, 2022, doi: 10.1016/j.renene.2021.12.030.
[27] W. Wang, Z. Han, and J. Pei, “Energy efficiency optimization of water pump based on heuristic algorithm and computational fluid dynamics,” J Comput Des Eng, vol. 10, no. 1, pp. 382–397, 2023, doi: 10.1093/jcde/qwac136.
[28] J. Deuerlein and A. R. Simpson, “The energy-efficiency benefits of pump-scheduling optimization for potable water supplies,” J Water Resour Plan Manag, vol. 148, no. 4, p. 04022005, 2022, doi: 10.1061/(ASCE)WR.1943-5452.0001538.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Agi Tama, Karel Octavianus Bachri, Joko Tri Susilo, Erik Agustian Yulanda, Bambang Iwan Suryana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.













