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ABSTRACT 
 

Indonesia's aquaculture industry has substantial economic potential, but it faces considerable credit risk 

from natural disasters like floods, which lead to high Non-Performing Loans (NPLs). Current methods for 

assessing credit risk do not adequately consider geographical risk factors. This research addresses this by 

developing a model to quantify flood-induced credit risk. The model integrates a Spatial Finance approach, 

Spatial Multi-Criteria Decision Analysis (AHP-GIS), and Monte Carlo risk simulation. Using a case study of 

flood-related credit losses from 2020 to 2022 in Kampar Regency, Riau, the model effectively maps flood 

vulnerability zones by weighting geospatial criteria through AHP. Key findings indicate that incorporating spatial 

factors significantly influences loss predictions. Credit portfolios in high flood risk areas show a maximum 

estimated loss (Value at Risk - VaR) that is 4.67% higher compared to traditional assessment scenarios. Therefore, 

this model provides a measurable tool for financial institutions to adjust credit portfolios, implement location-

specific risk reduction strategies, and ultimately improve financing stability in the aquaculture sector. 
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Introduction 
 

The aquaculture sector in Indonesia, particularly fish farming, shows significant economic potential, driven 

by a consistent increase in per capita fish consumption. [1]However, this sector is highly vulnerable to natural 

disasters, especially floods, which are a major cause of harvest failure and contribute to an increase in Non-

Performing Loans (NPLs). Data indicates that the fisheries sector has the highest NPL rate among other sectors, 

reaching 5.3% in 2023. The upward trend in NPLs often correlates with the frequency of flood events. [1]. 

Financial institutions traditionally rely on credit risk assessment approaches such as the 5Cs (Character, 

Capacity, Capital, Collateral, Condition). Although relevant, this approach has limitations in integrating location-

based (spatial) risks. Crucial factors such as the topography of aquaculture sites and historical rainfall are often 

overlooked, leading to less accurate risk assessments in the aquaculture sector. [2][3]. Amidst these challenges, 

the Spatial Finance paradigm emerges as a solution, combining geospatial data and financial analysis to assess the 

correlation between geographical factors and financial risk. [4] 

The novelty of this research lies in integrating three methodological pillars—Spatial-MCDA (AHP-GIS), 

credit risk analysis, and Monte Carlo simulation—for the first time within the context of aquaculture credit risk 

measurement in Indonesia. Unlike previous studies that tended to use AHP-GIS solely for hazard mapping [5] 

Alternatively, this research bridges the two if VaR is applied separately in a purely financial context. The proposed 

model not only spatially maps risk but also quantitatively measures its economic impact (VaR), thereby providing 

a preventive framework from the perspective of financial institutions, rather than merely a post-disaster response. 

This research aims to develop a credit risk measurement model that integrates location vulnerability to flood 

disasters. Specifically, this research aims to (1) develop a flood risk mapping model using the Analytical Hierarchy 

Process (AHP) and Weighted Overlay in a Geographic Information System (GIS) to identify risk zones, and (2) 

implement a Monte Carlo simulation to estimate Value at Risk (VaR) based on the spatial risk mapping[6]. 

 

 

Research Methods 
 

This research adopts a quantitative framework that integrates multiple methods. The case study location is 

Kampar Regency, Riau Province, an area frequently affected by flooding and characterized by significant 

aquaculture activities. 
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Conceptual Framework 

Through three main pillars, this research framework aims to bridge the gap between traditional aquaculture 

risk management and modern credit analysis. 

Firstly, Risk Management in Aquaculture and Limitations of Conventional Models. The aquaculture sector 

inherently faces environmental risks (floods, diseases) and operational risks (crop failure). [7][8]. As a primary 

environmental risk, flooding directly triggers operational risks, ultimately leading to financial risks such as credit 

default. [9]. Conventional credit assessment models like 4C/5C have proven inadequate because they fail to 

quantify risks from location-specific geographical factors. [3]. 

Secondly, the role of spatial finance and SMCDA in risk analysis is discussed. This study adopts a Spatial 

Finance approach to address these limitations, integrating geospatial data into financial analysis. [10] [11]. Its 

implementation is carried out through Spatial Multi-Criteria Decision Analysis (SMCDA), an ideal method for 

decision-making problems with spatial dimensions. [5]  [12]. Based on expert assessments, the Analytical 

Hierarchy Process (AHP) is used to systematically weight risk criteria such as elevation, rainfall, etc.. [13], [14], 

[15], [16]. These weights are then applied using the Weighted Overlay technique within GIS to generate objective 

and measurable flood risk zone maps.  

Thirdly, the quantitative financial risk analysis is done through the Monte Carlo Simulation and VaR. After 

identifying where risks are located, the next step is to measure the magnitude of their financial impact. Monte 

Carlo simulation is chosen for its ability to model uncertainty and generate thousands of potential loss scenarios 

based on complex probability distributions, making it highly suitable for non-normally distributed disaster risks 

[17]; [18]; [19].The results of this simulation are the Value at Risk (VaR), a standard industry metric for maximum 

expected losses at a given confidence level [20]. This modeling aims not to eliminate risk entirely—since risk is 

an inherent part of financing—but to quantify it objectively. By presenting potential maximum losses (VaR) across 

various scenarios, this model offers an understanding of acceptable risk levels and serves as a strategic basis for 

financial institutions in capital allocation and premium setting. 

 

Data Collection and Processing 

The data utilized comprises two types. Geospatial data include the Digital Elevation Model (DEM) from 

DEMNAS, rainfall data from CHIRPS, and river network and land cover data from national map sources. 

Financial data encompasses historical credit portfolio data (2020-2022) from financial institutions, containing 

debtor profile information, loan history, and actual losses due to default. 

The analysis begins with weighting flood risk criteria and credit risk criteria 4C (Character, Capacity, 

Capital, Condition) using AHP through questionnaires filled out by five industry experts. Subsequently, flood risk 

maps (Low, Moderate, High) are created in ArcGIS using Model Builder and Weighted Overlay. Spatial data 

integration into the credit model is achieved by recalibrating the Condition criterion scores. Specifically, each 

debtor is assigned a new Condition score corresponding to their cultivation location's risk zone classification 

(Low, Moderate, High), thereby modifying input parameters for subsequent risk analysis. The Probability of 

Default (PD) is calculated for four scenarios: (1) Conventional, (2) Low Flood Risk, (3) Moderate Flood Risk, 

and (4) High Flood Risk. Finally, a Monte Carlo simulation with 10,000 iterations is conducted for each scenario 

to compute the Value at Risk (VaR) at a 95% confidence level. 

 

 

Results and Discussion 
 

Spatial Analysis and Flood Risk Mapping 

The initial step in the analysis involves quantifying geographical factors. Based on the AHP assessment by 

five experts, the pairwise comparison matrix is aggregated to produce priority vectors or importance weights (w). 

To ensure the validity of expert evaluations, a consistency test is performed by calculating the Consistency Index 

(CI) and Consistency Ratio (CR) using the following equations: 

CI = (λ_max_ - n) / (n - 1) (1) 

CR = CI / RI (2) 

Where λ_max is the maximum eigenvalue of the comparison matrix, n is the number of criteria, and RI is 

the Random Index corresponding to n. The calculation results show a CR of 0.57% (well below the 10% 

threshold), confirming that expert assessments are consistent and valid. The importance weights indicate Rainfall 

(39.06%) as the most dominant factor, followed by Distance to River (25.19%), Slope Gradient (21.58%), Land 

Cover (7.24%), and Elevation (6.93%). 

 

Table 1 Flood Risk Criteria All Responden 

Criteria 
Elevatio

n 
Rainfall 

Distance to 

River 
Slope 

Landcove

r 

Prioritie

s 

Ran

k 

Elevation 100,00% 18,41% 28,57% 28,57% 100,00% 6,93% 5 
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Rainfall 543,10% 
100,00

% 
137,97% 

237,14

% 
482,87% 39,06% 1 

Distance to River 349,97% 72,48% 100,00% 
112,47

% 
337,98% 25,19% 2 

Slope 349,97% 42,17% 88,91% 
100,00

% 
327,19% 21,58% 3 

Landcover 100,00% 20,71% 29,59% 30,56% 100,00% 7,24% 4 

Consistency 

Ratio 
0,57% 

 

Interpretation of Weighting: The high weights assigned to Rainfall and Distance to River are highly relevant 

in the context of fluvial flooding (floods caused by river overflow) in Kampar Regency. According to experts, 

this indicates that the primary triggers of flooding are high water volume (rainfall) and proximity to overflow 

sources (rivers). Topographical factors such as slope are also significant as they influence flow velocity and 

potential inundation, while land cover and elevation have smaller but still contributory effects. 

These weights are then used in the Influence Rate of Weighted Overlay analysis in GIS. Each criterion map 

(e.g., rainfall map) is reclassified and assigned scores (sᵢ) ranging from 1 (lowest risk) to 5 (highest risk). The final 

flood risk map (RiskIndex) is generated by combining all layers using the following equation: 

Risk Index = Σ (wᵢ × sᵢ) (3) 

 

Where wᵢ is the AHP weight for criterion i, the resulting map classifies Kampar Regency into low, moderate, 

and high-risk zones. Spatial analysis indicates that most debtor locations are in moderate to high-risk zones, 

predominantly near the Kampar River. This highlights systemic vulnerability, as a major flood event could impact 

a significant portion of the aquaculture credit portfolio in the region. 

 

Table 2 Classification per the Criteria of Flood Risk 

Criteria Risk Zone Classification Value Range 
Risk 

Score 

Influence 

Rate 
Reason and Reference 

Elevation 

(m asl) 

High (safe) > 75 m 1 

0.068 

High elevation reduces flood 

risk as water flows to lower 

areas. 

Moderately High 51 – 75 m 2 
Still relatively safe, lower 

flood risk. 

Medium 26 – 50 m 3 
Flood risk starts to increase, 

depending on other factors. 

Low (vulnerable) 0 – 25 m 4 
Low-lying areas are highly 

prone to flooding. 

Distance to 

River (km) 

Close (high risk) < 300 meters 4 

0.251 

Closer to river increases flood 

risk due to overflow potential. 

Medium 300 – 500 meters 3 
Risk decreases but remains 

significant. 

Far (safe) > 500 meters 1 
Greater distance lowers the 

risk of river flooding. 

Rainfall 

(mm/year) 

High (risky) > 1500 mm 4 

0.371 

High rainfall increases flood 

potential. 

Medium 1000 – 1500 mm 3 Medium flood risk. 

Low (safe) < 1000 mm 1 
Low rainfall reduces flood 

risk. 

Slope 

(degrees) 

Flat (risky) 0 – 5° 4 

0.216 

Flat slope slows down water 

flow, increasing flood 

accumulation. 

Moderate 6 – 15° 3 
Water flows more quickly, 

reducing flood accumulation. 

Steep (safe) > 15° 1 

Steep slopes speed up water 

runoff, reducing 

accumulation. 

Land Use 
Settlement/Urban/Rice 

Field/Shrubland (risky) 

Dryland 

farming, Shrubs, 

Open land 

5 0.073 
Poor water absorption, 

increasing runoff, and floods. 
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Plantation / Moderate 

Vegetation 

Mixed 

plantations, 

gardens 

3 
Moderate water absorption, 

medium flood risk. 

Forest / Dense Vegetation 

(safe) 

Dense forest, 

vegetation 
1 

Good water absorption, 

reducing flood risk. 

 

 
Figure 1 Map classifies kampar regency 

 

The crucial point of integration occurs within the Condition criterion. In the conventional assessment, the 

Condition score (let's call it Old Condition) was a uniform value of 0.60 for all debtors, reflecting a general 

assumption of stable external factors. Our model replaces this static value with a dynamic, spatially-adjusted score 

(New Condition) based on the farm's location derived from the flood risk map. A score of 0.70 was assigned to 

locations in Low Risk zones, 0.50 for Medium Risk, and 0.20 for High Risk. This transformation directly links 

geographical vulnerability to the credit assessment framework. 

Table 3 below illustrates this data transformation process for a sample of debtors, showing the initial 4C 

scores and how the Condition score is adjusted based on the spatial analysis. 

 

Table 3 Spatial Integration into Credit Risk Calculation 

ID Old Condition Flood Risk Category Risk Score New Condition 

1,40105E+15 0,60 High 3 20% 

1,40105E+15 0,60 High 3 20% 

1,40105E+15 0,60 High 3 20% 

1,40105E+15 0,60 Low 1 70% 

1,40105E+15 0,60 Low 1 70% 

1,40105E+15 0,60 Medium 2 50% 

1,40105E+15 0,60 High 3 20% 

1,40105E+15 0,60 Medium 2 50% 

1,40105E+15 0,60 Medium 2 50% 

 

Integration of Spatial Risk into Credit Risk Models 

The generated flood risk map serves as the basis for recalibrating the Condition criterion within the 4C credit 

risk model. The AHP weighting for the 4C criteria indicates an adaptive pattern: under conventional scenarios, 

Character (44.6%) emerges as the most significant factor. However, in high flood risk scenarios, the weight of 

Condition increases dramatically to 29.9%, indicating a shift in assessment focus when environmental risk 

becomes substantial. 

 

Table 4 AHP Weighting for the 4C Ciriteria 

Scenarios Character Capacity Capital Condition Consistency Ratio 

Konventional 0,446 0,299 0,086 0,169 0,0074 

Low Risk 0,542 0,207 0,098 0,153 0,0089 

Map of Flood-Prone Areas in Kampar 

Risk 
Low 

Medium 

High 
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Medium Risk 0,508 0,216 0,094 0,182 0,0042 

High Risk 0,405 0,213 0,084 0,299 0,0124 

 

The probability of default (Probability of Default - PD) for each borrower and each criterias are calculated 

by aggregating risk scores from each criterion. First, the risk score for each criterion (rᵢ) is computed as: 

rᵢ = 1 - qᵢ (4) 

where qᵢ is the initial credit score for criterion i (for example, a score of 0.58 for Character results in rᵢ = 

0.42). Subsequently, the final risk score for each criterion (Cᵢ) is calculated by multiplying it with the AHP weight 

(Wᵢ): 

Cᵢ = Wᵢ × rᵢ (5) 

The total Probability of Default (PD) for a borrower is the sum of all final risk scores: 

PD = Σ Cᵢ = Σ (W i× rᵢ)  (6) 

This process is performed for four scenarios, in which the values of qᵢ and Wᵢ for the Condition criterion are 

adjusted based on the borrower's location's flood risk zone. 

 

Monte Carlo Simulation and Value at Risk (VaR) Analysis 

Using the mean and standard deviation of PD obtained for each scenario, a Monte Carlo simulation is run 

with 10,000 iterations to estimate the potential loss distribution of the portfolio. Each iteration calculates potential 

loss using a formula equivalent to:  

Expected Credit Loss = NORM.INV(RAND(), μPD, σPD) × Exposure at Default (7) 

where μPD and σPD are the mean and standard deviation of the Probability of Default for that scenario , 

value at Risk (VaR) at a 95% confidence level is then identified from the 95th percentile of the 10,000 simulated 

loss results. The VaR results for each scenario are presented in Table 4. 

 

Table 5 Results of Value at Risk (VaR) Calculation per Scenario 

Scenarios 
Mean PD 

Portfolio (%) 

Standard Dev. 

PD Portofolio 

(%) 

Exposure of 

Credit (IDR) 
VaR 95%  

Risk Flood 

Scenarios vs 

Konventional 

Konventional 44,92% 7,19% 100.000.000 6.229.955,57 - 

Low Risk 42,76% 7,77% 100.000.000 6.119.385,16 -1.87% 

Medium Risk 45,89% 5,07% 100.000.000 6.335.044,73 +1.12% 

High Risk 46,59% 8,86% 100.000.000 6.444.999,62 +4.67% 

 

Note: The VaR values above are examples from a single simulation iteration. Absolute values may vary slightly, 

but the pattern remains consistent. 

 

Interpretation of VaR Results 

Conventional Scenario vs. Low Risk: The decrease in VaR in the low-risk scenario (-1.77%) indicates that 

possessing positive information about location safety (low risk) is preferable to having no information at all 

(conventional). This reduces uncertainty and results in a slightly lower risk estimate. 

Progressive Risk Increase: VaR consistently increases in VaR from the low to moderate risk scenario 

(+1.69% vs. conventional) and peaks at the high-risk scenario (+3.45% vs. conventional, with full analysis 

reaching 4.67%). This pattern quantitatively validates the primary hypothesis of the research: the higher a 

location's spatial vulnerability, the greater the potential financial loss. 

Managerial Implications: The significant increase in VaR is not merely a statistical figure. It represents the 

monetary risk borne by financial institutions. Ignoring geographic factors systematically underestimates potential 

losses, leading to insufficient capital reserves and portfolio instability during disasters. 

 

Model Validation and Limitations 

The validity of the generated flood risk map was verified by comparing the mapped high-risk zones with 

news reports and data on actual flood events in Kampar Regency during the 2023-2025 period. The comparison 

showed a strong correlation: areas identified by the model as high-risk, such as those along the Kampar River 

Basin, were empirically the locations of recurring, significant floods that impacted communities and aquaculture 

farms. This provides strong qualitative validation for the spatial model's ability to identify vulnerable areas 

accurately. 

However, this study has a key limitation. The primary constraint is the unavailability of actual, post-flood 

credit loss data for the study period, which is necessary for quantitative back-testing of the VaR model. 

Consequently, the loss estimation could only be validated qualitatively through logical consistency and scenario 

comparison. Future research should prioritize collecting real-world loss data for more robust, quantitative 

validation. 
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Implications and Contribution of the Model 

Academically, this integrated model contributes to the development of the Spatial Finance methodology. It 

provides a concrete example of how geospatial data can be embedded into traditional financial risk models to 

produce more dynamic and accurate assessments. This opens the door for similar applications in other climate-

sensitive sectors, such as agriculture or real estate. Practically, the model offers a powerful decision-support tool 

for financial institutions. By mapping and quantifying location-based risk, credit analysts can create more 

differentiated policies, such as adjusting credit limits, interest rates, or requiring disaster insurance for debtors in 

high-risk zones. Ultimately, this can help reduce NPLs and improve portfolio sustainability. 

 

 

Conclusions 
 

This study successfully developed and validated an integrated model combining Spatial Finance, SMCDA, and 

Monte Carlo simulation to measure credit risk in the aquaculture sector, which is vulnerable to flooding. The 

model effectively maps flood risk zones and quantifies their impact on potential financial losses. 

The main contribution of this research is the quantitative proof that spatial data integration is not merely 

an enhancement but a necessity for valid credit risk assessment in geographically sensitive sectors. The 

progressive increase in VaR with rising flood risk levels confirms that conventional approaches are no longer 

sufficient for sectors heavily influenced by environmental conditions. This model provides a practical tool for 

financial institutions to conduct more selective assessments, implement appropriate risk mitigation strategies, and 

ultimately support Indonesia's aquaculture sector's sustainability. Future research should perform back-testing 

with more recent data and incorporate other environmental risk variables such as disease or drought. 

For future implementation, developing an interactive, web-GIS-based dashboard is recommended. Such 

a dashboard would allow financial institution management to dynamically input new data—both for the credit 

portfolio and for the latest geospatial information—and the system would automatically recalculate risk maps and 

VaR estimates. This tool would transform the current static model into a dynamic, real-time decision-support 

system, facilitating proactive risk management as conditions on the ground change. 
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