Jurnal Teknologi dan Manajemen Industri Terapan (JTMIT) Vol. 4, No. 4, Dsember 2025 pp. 2154 - 2165
P-ISSN: 2829-0232 E-ISSN: 2829-0038

Implementasi Layer-7 Load Balancing Dengan Sistem Geo-Aware Failover
Untuk Meningkatkan Reliabilitas Layanan Berbasis Web

Wildy Sheverando?, Agustinus Fritz Wijaya?
12 Program Studi Informatika, Fakultas Teknologi Dan Desain, Universitas Bunda Mulia
JI. Lodan Raya No. 2, Jakarta Utara, 14430, Indonesia
Email: shiwildy@gmail.com, 2agustinus.wijaya@bundamulia.ac.id

ABSTRAK

Sistem load balancing merupakan komponen penting dalam menjaga kinerja dan ketersediaan layanan pada
infrastruktur jaringan berskala besar, namun banyak implementasi yang masih menggunakan algoritma statis seperti Round
Robin yang belum mampu menyesuaikan kondisi kesehatan server dan latensi jaringan secara real-time, sehingga berpotensi
meningkatkan latensi dan downtime ketika salah satu server mengalami gangguan. Penelitian ini bertujuan untuk merancang
dan mengimplementasikan sistem Layer-7 Load Balancer berbasis Geo-Aware Failover dengan perhitungan Exponential
Weighted Moving Average (EWMA) sebagai solusi untuk meningkatkan stabilitas distribusi beban, reliabilitas layanan, serta
pengambilan keputusan adaptif pada lingkungan multi-region. Implementasi dilakukan menggunakan OpenResty (Nginx +
LuaJIT) yang dilengkapi modul deteksi lokasi pengguna, pemeriksaan kesehatan backend, dan pembaruan nilai latensi secara
berkelanjutan. Pengujian performa dan reliabilitas dilakukan menggunakan Apache JMeter dan PyTest dalam skenario
normal, failover, dan failback. Hasil pengujian menunjukkan bahwa sistem mampu mempertahankan waktu respons rata-
rata pada rentang 208-300 ms, transisi failover kurang dari 1 detik, serta tingkat ketersediaan layanan di atas 99%, dengan
peningkatan performa yang lebih baik dibandingkan metode Round Robin konvensional. Dengan demikian, penelitian ini
memberikan kontribusi berupa pengembangan mekanisme load balancing adaptif berbasis lokasi dan latensi yang dapat
meningkatkan performa, kontinuitas layanan, dan kemampuan adaptif pada arsitektur layanan berbasis web berskala global.

Kata kunci: Web Service Reliability, Layer-7 Load Balancing, Geo-Aware Failover, High Availability, Adaptive
Latency-Based Routing.

ABSTRACT

Load balancing systems are essential to maintaining performance and service availability within large-scale network
infrastructures. However, many existing implementations still rely on static algorithms such as Round Robin, which are not
capable of adapting to real-time server health and network latency, potentially resulting in increased latency and downtime
when a backend server fails. This research aims to design and implement a Layer-7 Load Balancer based on Geo-Aware
Failover and Exponential Weighted Moving Average (EWMA) calculations to improve load distribution stability, service
reliability, and adaptive decision-making in multi-region environments. The system is implemented on OpenResty (Nginx +
LuaJIT) equipped with modules for user geolocation detection, active backend health checking, and continuous latency
evaluation. Performance and reliability testing were conducted using Apache JMeter and PyTest across normal, failover, and
failback scenarios. The results show that the system can maintain an average response time of 208-300 ms, achieve failover
in less than 1 second, and sustain service availability above 99%, outperforming the conventional Round Robin method.
Therefore, this research provides a contribution in the form of an adaptive load-balancing mechanism based on geographic
proximity and latency, which enhances performance, service continuity, and adaptive capability in globally distributed web
service architectures.

Keywords: Web Service Reliability, Layer-7 Load Balancing, Geo-Aware Failover, High Availability, Adaptive
Latency-Based Routing.

Pendahuluan

Perkembangan layanan berbasis web dan sistem informasi terdistribusi meningkat pesat seiring dengan pertumbuhan
layanan e-commerce, streaming, financial technology, serta aplikasi real-time lainnya yang membutuhkan performa tinggi
dan high availability [1], [2], [3]. Pada arsitektur layanan global, pengguna berasal dari lokasi geografis yang sangat beragam
sehingga perbedaan rute jaringan dan jarak fisik berdampak langsung pada Round Trip Time (RTT), throughput, serta
pengalaman akses pengguna akhir [4], [5]. Ketika permintaan meningkat, server tunggal dapat mengalami overload yang
memicu latency spike dan penurunan kualitas layanan [6].

2154

Jurnal Teknologi dan Manajemen Industri Terapan (JTMIT) Vol. 4, No. 4, Dsember 2025 pp. 2154 - 2165
P-ISSN: 2829-0232 E-ISSN: 2829-0038

Load balancing menjadi pendekatan utama untuk mendistribusikan trafik ke banyak backend agar performa tetap stabil
[7]. Namun, sebagian besar implementasi Layer-7 load balancing di lingkungan produksi masih mengandalkan algoritma
statis seperti Round Robin dan Least Connection, yang tidak memperhitungkan kondisi kesehatan backend maupun dinamika
jaringan saat permintaan terjadi [8], [9]. Jika salah satu server mengalami kegagalan atau degradasi kinerja, sistem tetap
mengarahkan trafik ke server tersebut sehingga menyebabkan downtime, penolakan koneksi, dan potensi service disruption
[10], [211].

Beberapa studi mencoba meningkatkan kinerja metode statis dengan menambahkan indikator performa seperti
connection weight atau queue utilization [8], [12], namun masih belum memanfaatkan informasi latensi aktual dan kedekatan
geografis pengguna. Padahal penelitian menunjukkan bahwa kedekatan regional dapat mengurangi latensi secara signifikan
dan berdampak langsung pada quality of experience (QoE) pengguna [13], [14]. Selain itu, penelitian mengenai geo-aware
routing pada content delivery umumnya hanya fokus pada optimasi pemilihan edge node dan tidak memiliki mekanisme
pemulihan otomatis (failover) ketika terjadi kegagalan layanan [15], [16], [17].

Adapun penelitian pada domain adaptive load balancing cenderung hanya melakukan evaluasi pada lingkungan
simulasi atau jaringan lokal (private network) tanpa mempertimbangkan fluktuasi latensi pada jaringan publik yang
sesungguhnya [18], [19], [20]. Beberapa pendekatan menggunakan ping-based RTT monitoring, tetapi nilai RTT yang
berfluktuasi ekstrem dapat menyebabkan pemilihan backend menjadi tidak stabil dan sering berubah (thrashing). Oleh karena
itu, diperlukan mekanisme penstabil nilai latensi seperti Exponential Weighted Moving Average (EWMA) yang terbukti
mampu memberikan tren latensi lebih representatif untuk pengambilan keputusan adaptif [21], [22].

Dari tinjauan literatur tersebut, terlinat bahwa masih terdapat research gap:

1. Layer-7 load balancing berbasis geo-aware failover.

2. Adaptasi pemilihan backend berdasarkan latensi aktual yang distabilisasi.

3. Evaluasi langsung pada jaringan internet publik multi-region, bukan simulasi.

Untuk menjawab kekosongan riset tersebut, penelitian ini mengembangkan sebuah mekanisme Layer-7 Load Balancer
berbasis Geo-Aware Failover + EWMA-based adaptive routing yang diimplementasikan pada OpenResty agar keputusan
routing dapat dilakukan secara real-time pada tingkat aplikasi [23].

Sistem ini dirancang untuk mampu:

1. Mendeteksi kegagalan backend dan melakukan failover otomatis dalam waktu sub-detik,

2. Memulihkan aliran trafik secara failback setelah server pulih.

3. Menjaga kestabilan latensi pada kondisi jaringan publik yang dinamis.

Evaluasi dilakukan dengan pengujian performa dan reliabilitas melalui skenario normal, failover, dan failback di
lingkungan multi-region (Asia—US) sehingga menggambarkan kondisi operasional nyata [18], [19], [24]. Dengan demikian,
kontribusi utama penelitian ini adalah peningkatan reliabilitas dan performa layanan web dengan pendekatan adaptif berbasis
lokasi dan latensi, yang dapat diimplementasikan pada berbagai layanan berskala besar, termasuk multi-region SaaS, edge
computing, dan sistem web modern lainnya [25].

Metode Penelitian

Penelitian ini menggunakan metode experimental research, yaitu metode yang menekankan pada pengujian
langsung terhadap sistem yang sedang dibangun pada lingkungan nyata. Pendekatan ini dipilih karena tujuan
utama penelitian adalah mengevaluasi performa dan reliabilitas sistem Layer-7 Load Balancer berbasis Geo-
Aware Failover ketika dijalankan di jaringan internet publik, bukan hanya di lingkungan simulasi. Dengan cara
ini, hasil yang diperoleh dapat menggambarkan perilaku sistem pada kondisi operasional sesungguhnya, termasuk
fluktuasi latensi, rute jaringan internasional, dan potensi kegagalan server yang terjadi sewaktu-waktu.

1. Lingkungan Pengujian

Untuk mendukung metode experimental research yang digunakan, sistem diuji pada tiga server yang
ditempatkan di lokasi geografis berbeda. Satu server digunakan sebagai load balancer yang ditempatkan di
Singapura, sedangkan dua server lainnya berperan sebagai backend yang ditempatkan di Indonesia dan Amerika
Serikat. Semua server menggunakan sistem operasi Debian 13 dengan spesifikasi yang disesuaikan untuk
kebutuhan pengujian. Penempatan ini dipilih untuk mensimulasikan kondisi layanan global, di mana perbedaan
jarak fisik dan rute jaringan akan secara langsung mempengaruhi nilai latensi.

2. Tahapan Penelitian
Secara garis besar tahapan penelitian ini meliputi beberapa hal yakni:
1. Analisis kebutuhan, untuk mengidentifikasi kelemahan metode load balancing tradisional seperti Round
Robin dan menentukan kebutuhan sistem yang adaptif.
2. Perancangan arsitektur, yang mencakup desain Layer-7 Load Balancer, mekanisme Geo-Aware Failover,
health check, pengukuran RTT, dan perhitungan EWMA.

2155

Jurnal Teknologi dan Manajemen Industri Terapan (JTMIT) Vol. 4, No. 4, Dsember 2025 pp. 2154 - 2165
P-ISSN: 2829-0232 E-ISSN: 2829-0038

3. Implementasi sistem, menggunakan OpenResty (Nginx + LuaJIT) sebagai platform utama, dengan logika
routing dan monitoring yang ditulis menggunakan bahasa Lua.

4. Pengujian sistem, yang dilakukan langsung di jaringan internet publik menggunakan Apache JMeter dan
PyTest.

5. Analisis hasil, untuk mengevaluasi performa, reliabilitas, serta kelebihan dan kekurangan sistem yang
dikembangkan.

3. Metode Pengujian

Pengujian dalam penelitian ini dibagi menjadi dua kelompok utama, yaitu pengujian performa dan pengujian
reliabilitas. Pengujian performa dilakukan dengan Apache JMeter untuk mengukur waktu respons rata-rata,
throughput, serta kestabilan sistem ketika menerima requests yang tinggi. Sementara itu, pengujian reliabilitas
dilakukan dengan mensimulasikan skenario kegagalan backend, seperti mematikan salah satu server selama
pengujian berlangsung, dan mengamati bagaimana sistem melakukan failover dan failback.

Seluruh pengujian dijalankan pada jaringan internet publik sehingga setiap hasil yang diperoleh
mencerminkan kondisi operasional yang realistis. Dengan pendekatan ini, efektivitas arsitektur yang diusulkan
dapat dinilai secara lebih objektif.

4. Perancangan Sistem

Perancangan sistem dalam penelitian ini difokuskan pada pengembangan mekanisme adaptive load
balancing yang mampu menjaga kontinuitas layanan meskipun salah satu backend mengalami degradasi performa
atau kegagalan total. Pendekatan ini bekerja pada Layer-7 sehingga load balancer tidak hanya melihat alamat IP
dan port, tetapi dapat menganalisis karakteristik permintaan seperti HTTP header serta pola trafik untuk
menentukan backend yang paling sesuai. OpenResty dipilih sebagai platform inti karena memiliki kemampuan
untuk mengeksekusi logika berbasis Lua secara langsung pada reverse proxy, yang membuat proses pengambilan
keputusan routing berlangsung secara cepat dan berorientasi kondisi aktual jaringan. Dengan desain ini, arah trafik
tidak lagi bersifat statis seperti Round Robin, tetapi dinamis dan bergantung pada performa backend serta
kedekatan geografis dengan pengguna.

Agar sistem mampu bereaksi secara akurat terhadap perubahan kondisi jaringan publik, load balancer
dilengkapi modul health monitoring berkala dan mekanisme pengukuran Round-Trip Time (RTT) yang diperhalus
menggunakan metode Exponential Weighted Moving Average (EWMA). Nilai EWMA ini berfungsi sebagai
indikator utama dalam menentukan backend yang sedang berada dalam kondisi optimal. Ketika backend
menunjukkan respons lambat atau gagal merespons beberapa kali berturut-turut, sistem akan menjalankan failover
secara otomatis ke backend alternatif yang masih sehat dan memiliki nilai latensi terbaik. Sebaliknya, jika backend
yang sebelumnya bermasalah telah kembali stabil, sistem memasukkannya kembali ke rotasi melalui proses
failback yang terkontrol. Dengan perancangan ini, sistem dapat mempertahankan ketersediaan layanan tetap
tinggi, waktu respons terjaga, dan pengalaman pengguna tetap konsisten walaupun terdapat gangguan di salah
satu bagian infrastruktur.

Selain mengutamakan reliabilitas, perancangan sistem ini juga mempertimbangkan aspek skalabilitas dan
kemudahan pengelolaan. Daftar backend disusun dalam konfigurasi terpisah sehingga penambahan server baru
dapat dilakukan tanpa perubahan pada logika inti. Semua status backend disimpan pada memori bersama sehingga
akses dan pembaruan informasi dapat dilakukan dengan latensi minimal. Arsitektur ini memungkinkan sistem
untuk terus diperluas mengikuti pertumbuhan trafik, sekaligus memastikan setiap backend memperoleh trafik
sesuai kapasitasnya. Dengan demikian, rancangan ini menjadi solusi yang tidak hanya responsif terhadap
kegagalan, tetapi juga mampu menyesuaikan beban layanan di masa mendatang dengan usaha pemeliharaan yang
relatif rendah.

4.1 Mekanisme Health Check

Load Batancer Backend ID Backend US

Load Balancer Backend 10 Backend US

Gambar 1. Mekanisme Health check

2156

Jurnal Teknologi dan Manajemen Industri Terapan (JTMIT) Vol. 4, No. 4, Dsember 2025 pp. 2154 - 2165
P-ISSN: 2829-0232 E-ISSN: 2829-0038

Pada mekanisme health check, load balancer secara berkala melakukan monitoring terhadap setiap backend
server untuk memastikan status kesehatannya. Proses ini berjalan otomatis menggunakan timer internal yang
diatur pada interval tertentu seperti setiap 5 detik. Pada setiap siklus monitoring, load balancer mengirimkan
permintaan HTTP HEAD ke masing-masing backend untuk memastikan bahwa server masih dapat memberikan
respons dalam batas waktu yang telah ditentukan. Jika backend merespons dengan status code 200 atau respons
sukses lainnya, maka server tersebut dianggap healthy dan tetap berada dalam rotasi distribusi trafik.

Namun apabila backend mulai mengalami gangguan dan gagal merespons pemeriksaan, load balancer akan
mencatat kegagalan tersebut. Untuk mencegah kesalahan deteksi akibat gangguan jaringan sesaat, sistem
menerapkan mekanisme retry beberapa kali secara berturut-turut. Jika jumlah kegagalan telah mencapai ambang
batas seperti tiga kali berturut-turut, maka backend akan diberi status unhealthy dan sementara waktu dikeluarkan
dari server pool aktif. Status tersebut tetap dipantau dalam pemeriksaan berikutnya sehingga ketika server kembali
pulih, dapat dimasukkan lagi ke dalam rotasi melalui mekanisme failback. Dengan cara ini, sistem dapat
memastikan bahwa permintaan pengguna selalu dialihkan ke backend yang paling responsif dan terpercaya untuk
menjaga ketersediaan layanan secara berkelanjutan.

4.2 Mekanisme Pengukuran Latensi

Load Eatancer Backend D Backend Us

Penggna

Load Datancer Backend Backend US

Gambar 2. Mekanisme pengukuran Latensi

Pada mekanisme pengukuran latensi, load balancer melakukan evaluasi terhadap waktu respons setiap
backend server untuk memastikan bahwa permintaan pengguna diteruskan ke server dengan performa yang
terbaik pada saat itu. Setelah permintaan dari pengguna diterima, load balancer terlebih dahulu mengidentifikasi
daftar backend yang berstatus healthy. Selanjutnya, load balancer mengirimkan latency probe berupa permintaan
ringan ke masing-masing backend, kemudian menghitung nilai Round Trip Time (RTT) berdasarkan jeda waktu
antara permintaan dikirim dan respons diterima kembali.

Nilai RTT yang diperoleh kemudian tidak langsung dijadikan dasar dalam pengambilan keputusan, karena
kondisi jaringan publik dapat berubah secara dinamis sehingga berpotensi menghasilkan fluktuasi yang sangat
tajam. Untuk itu digunakan metode Exponential Weighted Moving Average (EWMA) dalam menstabilkan data
latensi. Setiap nilai RTT terbaru akan dipadukan dengan nilai EWMA sebelumnya sesuai nilai faktor pembobot («)
yang ditentukan. Hasil perhitungan EWMA ini lebih dapat merepresentasikan kondisi latensi aktual namun tetap
menjaga stabilitas agar keputusan pemilihan backend tidak berubah secara agresif.

Setelah semua nilai EWMA diperbarui, load balancer akan membandingkan performa setiap backend yang
healthy, lalu memilih backend dengan latensi terendah sebagai server tujuan untuk memproses permintaan
pengguna. Dengan mekanisme ini, sistem dapat melakukan adaptive routing secara real-time, sehingga
pengalaman pengguna tetap optimal meskipun kondisi jaringan pada lintas wilayah berubah-ubah

Rumus yang digunakan adalah:
EWMA = a X RTT, + (1 — a) Xx EWMA,_
Penjelasan rumus yang digunakan:
- RTT, adalah nilai RTT dari hasil pengukuran terbaru.
- EWMA,_ Adalah nilai EWMA pada pengukuran sebelumnya.
- o adalah faktor pembobot antara 0 dan 1 yang menentukan seberapa besar pengaruh nilai RTT terbaru
terhadap nilai EWMA. Semakin besar ¢ semakin cepat EWMA mengikuti perubahaan RTT, semakin
kecil ¢ semakin stabil nilai EWMA dari waktu ke waktu

2157

Jurnal Teknologi dan Manajemen Industri Terapan (JTMIT) Vol. 4, No. 4, Dsember 2025 pp. 2154 - 2165
P-ISSN: 2829-0232 E-ISSN: 2829-0038

4.3 Mekanisme Failover

Load Batancer Backend 1D Backend U

Status aval
1D = HEALTHY, US = HEALTHY

Terjads gangguan i Backend 1D

HITP Health Chack

Timeout gogel (3x bertuna-turut) °
Tandal Backend ID = UNHEALTHY
HITP Request berikutnya
o
O

Forvard request (Failover)

Response.

Rezponze (latensi labih tingsf)
- =T

Seluruh trafik dialifkan ke Sackend US
hingss [0 kembalt sehat.

Load Balancer Backend 10 Backend Us

Gambar 3. Mekanisme Failover

Pada mekanisme failover, sistem akan mengalihkan seluruh trafik ke backend server lain yang masih dalam
kondisi healthy ketika backend utama mengalami kegagalan. Proses ini dimulai dari pendeteksian kegagalan saat
load balancer menjalankan health check berkala. Apabila backend utama gagal merespons beberapa kali secara
berturut-turut dalam batas waktu tertentu, sistem akan menandai server tersebut sebagai unhealthy. Penandaan ini
dilakukan agar load balancer tidak lagi meneruskan permintaan pengguna ke server yang bermasalah, sehingga
mencegah terjadinya gangguan layanan seperti request timeout atau service unavailable.

Setelah status unhealthy diterapkan, load balancer mengambil keputusan untuk melakukan failover dengan
memilih backend alternatif yang masih dalam keadaan healthy dan memiliki nilai latency terbaik berdasarkan
pengukuran terakhir. Dengan demikian, proses perpindahan trafik dilakukan secara otomatis tanpa memerlukan
campur tangan administrator dan tanpa disadari oleh pengguna akhir. Seluruh permintaan baru akan diarahkan ke
backend cadangan hingga backend utama kembali dapat merespons secara normal dan dinyatakan pulih melalui
mekanisme failback. Pendekatan ini memastikan kontinuitas layanan tetap terjaga meskipun terjadi gangguan
pada salah satu backend, sehingga meningkatkan service availability dan pengalaman pengguna secara
keseluruhan.

4.4 Mekanisme Failback

- . tenais
s
bt
- AT e
el
1
°
°
e 1
o
e 8 °
e ———
R
: o
.
@ maicta
R
R
ot o
g
PR
[—
— I
Response (latensi rendah) 0
[e——
s

Gambar 4. Mekanisme Failback

Pada mekanisme failback, sistem mengembalikan alur trafik ke backend server utama setelah server tersebut
dinyatakan pulih dan stabil. Proses ini tidak dilakukan secara langsung begitu backend kembali merespons, tetapi
melalui rangkaian health check yang dijalankan beberapa kali secara berturut-turut. Setelah sebelumnya backend
utama diberi status unhealthy akibat kegagalan berulang, load balancer tetap melanjutkan proses pemantauan
dengan mengirimkan health check request secara berkala. Jika pada beberapa siklus pemeriksaan berturut-turut
backend utama kembali memberikan respons yang valid dan berada dalam batas waktu yang normal, sistem akan
mengubah statusnya menjadi healthy.

2158

Jurnal Teknologi dan Manajemen Industri Terapan (JTMIT) Vol. 4, No. 4, Dsember 2025 pp. 2154 - 2165

P-ISSN: 2829-0232 E-ISSN: 2829-0038

Setelah status healthy dipulihkan, load balancer mulai menjalankan proses failback dengan mengalihkan

4.5 Pseudo-code Geo-Aware Layer-7 Load Balancing

Algoritma 1 Adaptive Geo-Aware Layer-7 Load Balancing

HEALTH_CHECK_INTERVAL =5
FAIL_THRESHOLD =3
ALPHA =03

struct Backend {
id
region
status
fail_count
rtt
ewma

}

function background_monitoring(backends):
every HEALTH_CHECK_INTERVAL seconds:
for backend in backends:
start = timestamp()
result = probe(backend)
latency = timestamp() - start

if result == SUCCESS:
backend.fail_count=0
backend.status = HEALTHY
backend.rtt = latency
if backend.ewma undefined:
backend.ewma = backend.rtt
else:
backend.ewma = ALPHA * backend.rtt
+ (1 - ALPHA) * backend.ewma
else:
backend.fail_count++
if backend.fail_count >=
FAIL_THRESHOLD:
backend.status = UNHEALTHY

function route_request(client_region, backends):
healthy = filter(backends, status == HEALTHY)
if healthy empty: return ERROR
regional = filter(healthy, region == client_region)
candidate = (regional not empty) ? regional : healthy
best = null ; best ewma = INF
for backend in candidate:
if backend.ewma defined and backend.ewma <
best ewma:
best = backend ; best ewma = backend.ewma
if best null: best = any(candidate)
return best

trafik kembali ke backend utama secara terkontrol. Pemulihan ini dapat dikombinasikan dengan evaluasi nilai
latency atau EWMA untuk memastikan bahwa kualitas respons backend utama memang sudah layak digunakan
sebagai rute utama. Dengan pendekatan tersebut, backend yang baru pulih tidak langsung menerima beban penuh
secara mendadak sehingga risiko gangguan ulang dapat dikurangi. Mekanisme failback ini memastikan bahwa
sistem tidak hanya mampu bereaksi terhadap kegagalan melalui failover, tetapi juga dapat mengoptimalkan
kembali jalur layanan ketika kondisi server backend sudah normal, sehingga performa dan konsistensi layanan
tetap terjaga.

2159

Jurnal Teknologi dan Manajemen Industri Terapan (JTMIT) Vol. 4, No. 4, Dsember 2025 pp. 2154 - 2165
P-ISSN: 2829-0232 E-ISSN: 2829-0038

Algoritma ini dijalankan sebagai bagian dari proses monitoring dan penanganan trafik pada load balancer, sehingga
memastikan sistem tetap responsif terhadap perubahan kondisi jaringan publik secara real-time.

Hasil Dan Pembahasan

Bagian ini menjelaskan hasil dari pengujian yang dilakukan terhadap sistem Layer-7 Load Balancer berbasis
Geo-Aware Failover. Seluruh pengujian dilakukan di lingkungan internet 2160ublic agar hasil yang diperoleh
mendekati kondisi operasional nyata. Selain menyajikan data hasil pengujian, bagian ini juga membahas pola
yang muncul selama sistem diuji, termasuk bagaimana sistem merespons perubahan kondisi jaringan dan
kegagalan pada backend.

1. Pengujian Failover PyTest

o P o o5 o5
& & & @7 & @

Gambar 5. Pengujian Failover menggunakan PyTest

Pada Gambar (5) memperlihatkan hasil pengujian proses failover yang dilakukan menggunakan PyTest
untuk memantau perubahan kondisi respons server ketika backend utama (Indonesia) dimatikan secara sengaja.
Pada grafik bagian atas, tampak pola perubahan nilai Round Trip Time (RTT) selama proses pengujian
berlangsung. Sebelum terjadi failover, RTT berada pada kisaran rendah yaitu sekitar 40 hingga 120 ms, yang
merupakan karakteristik normal ketika permintaan diarahkan ke backend Indonesia. Nilai RTT pada fase awal
relatif stabil dengan variasi kecil yang masih dapat dianggap sebagai fluktuasi alami jaringan pada kondisi
komunikasi normal.

Perubahan signifikan mulai terjadi ketika backend Indonesia dimatikan. Pada titik ini, grafik menunjukkan
lonjakan RTT yang cukup tajam. Lonjakan tersebut menandai momen perpindahan rute permintaan dari backend
Indonesia ke backend Amerika Serikat sebagai server pengganti. Hal tersebut dapat diterima karena secara
geografis jarak antara client dan backend Amerika Serikat jauh lebih besar sehingga waktu tempuh data otomatis
meningkat. Setelah perpindahan berlangsung penuh, nilai RTT tampak bertahan pada rentang di atas 500 ms dan
menjadi tren baru sepanjang backend utama masih tidak tersedia.

Pada grafik bagian bawah diperlihatkan pemilihan backend oleh sistem berdasarkan status kesehatan server
yang terpantau. Pada fase awal, seluruh permintaan diarahkan ke backend Indonesia, ditunjukkan oleh penanda
yang konsisten berada pada label ID. Ketika backend utama mengalami kegagalan, penanda berpindah ke label
US dan tetap berada di sana hingga kondisi backend utama kembali normal. Perpindahan ini menunjukkan bahwa
mekanisme health check bekerja sebagaimana mestinya, yaitu mendeteksi server yang tidak responsif lalu memicu
pengalihan trafik secara otomatis tanpa campur tangan manual.

Dari kedua grafik tersebut dapat dilihat bahwa proses failover berjalan cepat dan efektif. Lonjakan RTT yang
muncul hanya terjadi pada saat transisi perpindahan backend, dan setelah itu nilai RTT stabil pada rentang baru
sesuai karakteristik server cadangan. Tidak terdapat indikasi request yang gagal (error), maupun jeda layanan
yang terlalu lama yang dapat mengganggu pengguna. Dengan demikian, Gambar (5) memperlihatkan bahwa
sistem berhasil mempertahankan kontinuitas layanan di tengah kondisi kegagalan, serta mampu memberikan
pengalaman akses yang tetap konsisten walaupun backend utama tidak dapat digunakan.

Selain itu, hasil pengujian ini juga menguatkan bahwa logika pemilihan server yang berbasis health check
dan pengukuran latency secara langsung mampu menyesuaikan diri dengan kondisi jaringan yang berubah-ubah.
Observasi ini menjadi bukti bahwa sistem load balancer yang dirancang sudah memenuhi tujuan penelitian, yaitu
meningkatkan reliabilitas layanan berbasis web dengan perpindahan trafik yang mulus dan dampak minimal bagi
pengguna.

2160

Jurnal Teknologi dan Manajemen Industri Terapan (JTMIT) Vol. 4, No. 4, Dsember 2025 pp. 2154 - 2165
P-ISSN: 2829-0232 E-ISSN: 2829-0038

2 Pengujian Failback PyTest

== rm

Gambar 6. Pengujian Failback menggunakan PyTest

Pada Gambar (6) diperlihatkan perilaku sistem ketika backend utama (Indonesia) kembali aktif setelah
sebelumnya dinonaktifkan dalam pengujian failover. Grafik bagian atas menunjukkan perubahan nilai Round Trip
Time (RTT) selama proses transisi tersebut berlangsung. Pada fase awal grafik, seluruh permintaan masih
diarahkan ke backend Amerika Serikat sehingga nilai RTT berada pada rentang yang lebih tinggi dan tampak
fluktuatif. Kondisi ini dapat dipahami karena secara geografis koneksi ke backend AS memiliki jarak tempuh
jaringan yang lebih jauh, sehingga waktu responsnya juga lebih besar dibandingkan dengan backend Indonesia.

Perubahan mencolok mulai terlihat ketika backend Indonesia terdeteksi kembali aktif. Pada titik tersebut,
grafik menunjukkan adanya penurunan RTT yang cukup tajam dan terjadi dalam waktu yang relative singkat.
Penurunan ini merupakan indikasi bahwa sistem telah mengalihkan trafik dari backend Amerika Serikat menuju
backend Indonesia sebagai rute utama. Setelah perpindahan berlangsung, grafik memperlihatkan bahwa nilai RTT
kembali stabil pada rentang rendah yang sesuai karakteristik normal saat pengguna dilayani oleh backend lokal.

Grafik bagian bawah turut memperkuat hasil tersebut dengan visualisasi pemilihan backend oleh sistem.
Selama backend Indonesia belum dinyatakan sehat, semua marker berada pada label US. Setelah beberapa siklus
pemeriksaan kondisi atau health check menunjukkan hasil positif, sistem secara otomatis memasukkan kembali
backend Indonesia ke dalam rotasi layanan. Hal ini terlihat dari perpindahan marker pada grafik dari label US ke
ID. Perubahan posisi marker tersebut menunjukkan bahwa sistem telah kembali memprioritaskan backend lokal
dalam menangani permintaan pengguna.

Menariknya, perpindahan trafik tidak dilakukan secara mendadak, melainkan secara bertahap. Pendekatan
ini penting untuk menghindari lonjakan beban mendadak pada backend yang baru saja pulih. Dengan memberikan
waktu bagi backend Indonesia untuk kembali stabil, sistem dapat memastikan bahwa transisi tidak memunculkan
masalah lanjutan seperti overload atau drop koneksi. Setelah proses peralihan selesai, nilai RTT terlihat kembali
stabil pada kisaran rendah dan tidak terdapat lonjakan besar yang berulang, memberikan indikasi kuat bahwa
backend Indonesia sudah siap menangani trafik secara optimal.

Secara keseluruhan, Gambar (6) menunjukkan bahwa mekanisme failback pada sistem bekerja sesuai dengan
tujuan pengembangan. Sistem dapat mendeteksi kembalinya backend utama, memastikan kondisinya sudah stabil,
lalu mengalihkan trafik secara aman, bertahap, dan efisien. Transisi yang mulus ini membuktikan bahwa sistem
mampu mempertahankan kualitas layanan meskipun terjadi perubahan kondisi backend di belakang layar,
sehingga dari sisi pengguna layanan tetap responsif tanpa gangguan berarti.

3 Pengujian dengan JMeter

Pada Gambar (7) menampilkan hasil pengujian performa menggunakan Apache JMeter, yang dilakukan
untuk melihat bagaimana sistem merespons beban tinggi pada saat terjadi failover maupun failback. Pengujian ini
memanfaatkan ratusan virtual users yang secara bersamaan mengirimkan permintaan ke load balancer, sehingga
perubahan performa pada setiap tahapan dapat diamati secara lebih jelas.

Pada grafik bagian atas terlihat bahwa waktu respons mengalami fluktuasi sesuai dengan kondisi backend
yang sedang aktif. Pada fase awal, saat backend Indonesia masih berfungsi normal, nilai waktu respons cenderung
stabil pada rentang rendah. Polanya terlihat lebih merata, dengan variasi kecil yang wajar pada lingkungan
jaringan publik. Transisi pertama terjadi ketika backend Indonesia dimatikan untuk memicu failover. Pada titik
ini, kurva waktu respons menunjukkan peningkatan signifikan. Lonjakan ini merupakan dampak langsung dari
perpindahan rute permintaan ke backend Amerika Serikat yang memiliki jarak fisik lebih jauh, sehingga waktu
tempuh paket data menjadi lebih panjang.

2161

Jurnal Teknologi dan Manajemen Industri Terapan (JTMIT) Vol. 4, No. 4, Dsember 2025 pp. 2154 - 2165
P-ISSN: 2829-0232 E-ISSN: 2829-0038

Whmek W nr o W rubsa Ao raeer W

[T e—

[T P e—

Statistics

Meton @ o pet

Thecsahpt
Transaconss

Netwcek sec)

Gambar 7. Pengujian Failover menggunakan JMeter

Meski terjadi peningkatan waktu respons, grafik tetap menunjukkan bahwa sistem dapat mempertahankan
kestabilan setelah transisi selesai. Waktu respons berada pada kisaran baru yang lebih tinggi namun konsisten,
menandakan bahwa backend Amerika Serikat mampu menangani beban dengan baik tanpa adanya tanda-tanda
penurunan performa yang ekstrem.

Pada tahap berikutnya, ketika backend Indonesia kembali diaktifkan, grafik menunjukkan pola penurunan
waktu respons yang cukup jelas. Setelah proses kesehatan backend terdeteksi stabil kembali, sistem memulai
proses failback. Pada titik tersebut, nilai waktu respons kembali turun dan mendekati rentang awal, yang
mengonfirmasi bahwa backend Indonesia kembali menjadi backend utama. Transisi ini berlangsung dengan cukup
mulus tanpa menyebabkan lonjakan waktu respons yang mengganggu.

Tabel statistik pada bagian bawah gambar memperkuat observasi dari grafik. Terlihat bahwa pengujian
menghasilkan tingkat error yang sangat rendah bahkan mendekati 0% di sebagian besar skenario yang
menunjukkan bahwa sistem mampu menangani permintaan secara konsisten meskipun backend berubah. Nilai
throughput juga menunjukkan stabilitas yang baik, di mana selama periode failover throughput tetap dapat
dipertahankan pada angka yang wajar. Perbedaan throughput antara fase failover dan normal dapat dijelaskan oleh
kondisi jaringan lintas benua yang cenderung lebih lambat, sehingga berdampak langsung pada jumlah permintaan
per detik yang dapat diproses.

Dari hasil statistik tersebut, terlihat pula bahwa rata-rata waktu respons pada fase failover lebih tinggi
dibandingkan pada fase normal atau failback. Hal ini sesuai dengan teori bahwa pemilihan server yang berada
secara geografis jauh akan memberikan latensi yang lebih tinggi. Namun demikian, perbedaan tersebut tetap
berada dalam rentang yang dapat diterima dan tidak menimbulkan anomali yang dapat mengganggu keseluruhan
performa sistem.

Secara keseluruhan, pengujian JMeter memperlihatkan bahwa sistem load balancer tidak hanya mampu
mempertahankan kinerja pada kondisi normal, tetapi juga tetap stabil ketika terjadi failover maupun failback.
Pergantian backend tidak menyebabkan lonjakan error ataupun kegagalan respons yang signifikan, dan waktu
respons tetap berada dalam batas wajar. Hal ini menunjukkan bahwa mekanisme failover dan failback berjalan
sesuai desain dan mampu mendukung kebutuhan aplikasi yang membutuhkan reliabilitas tinggi.

4 Pengujian RoundRobin dengan PyTest

B

‘ ‘
- b/ -/

» 5
A% A

Gambar 8. Pengujian Roundrobin dengan PyTest

2162

Jurnal Teknologi dan Manajemen Industri Terapan (JTMIT) Vol. 4, No. 4, Dsember 2025 pp. 2154 - 2165
P-ISSN: 2829-0232 E-ISSN: 2829-0038

Pada Gambar (8) menunjukkan hasil pengujian algoritma Round Robin yang digunakan sebagai pembanding
terhadap pendekatan Layer-7 Geo-Aware yang dikembangkan pada penelitian ini. Dari grafik paling atas dapat
terlihat bahwa nilai RTT berubah dengan sangat tajam dari satu titik ke titik berikutnya, membentuk pola naik
turun yang ekstrem. Pola ini muncul karena Round Robin membagi beban secara bergantian antara backend
Indonesia dan backend Amerika Serikat tanpa mempertimbangkan lokasi pengguna, kondisi jaringan, maupun
performa backend pada saat itu. Ketika giliran backend Indonesia tiba, waktu respons berada pada kisaran rendah
karena jarak klien relatif dekat namun pada saat rute berpindah ke backend Amerika Serikat, nilai RTT melonjak
tinggi akibat jarak geografis dan rute jaringan internasional yang lebih panjang. Pergantian yang terjadi pada
setiap permintaan inilah yang membuat grafik RTT tampak sangat tidak stabil dan mengalami ayunan besar dari
nilai rendah ke nilai tinggi secara berulang.

Pada grafik bagian bawah, pergerakan titik antar backend juga terlihat bergantian dengan interval yang
sangat pendek. Hampir setiap pengukuran menunjukkan perpindahan server, yang menandakan bahwa Round
Robin tidak memiliki mekanisme untuk mempertahankan rute yang paling efisien. Pola pemilihan server yang
terlalu sering berubah ini menyebabkan kondisi sistem menjadi tidak konsisten. Pada beberapa titik, pengguna
merasakan respons cepat, namun pada titik lain, tiba-tiba terjadi peningkatan waktu respons yang cukup signifikan
tanpa ada perubahan kondisi jaringan yang jelas. Ketidakstabilan ini diperburuk oleh sifat Round Robin yang tidak
melakukan deteksi kualitas jaringan atau kondisi backend; ia hanya berputar secara mekanis mengikuti urutan
yang ditentukan.

Jika dibandingkan dengan metode pada penelitian ini, pola Round Robin terlihat jauh lebih tidak teratur dan
kurang responsif terhadap dinamika jaringan. Tidak ada proses penyaringan nilai latensi, tidak ada pertimbangan
lokasi pengguna, dan tidak ada mekanisme adaptif yang memprioritaskan server dengan waktu respons terbaik.
Akibatnya, setiap permintaan diperlakukan sama tanpa memperhatikan apakah backend yang diarahkan sedang
berada pada kondisi optimal atau tidak. Situasi seperti ini sangat merugikan pada layanan yang bersifat real-time
atau yang mengharuskan konsistensi waktu respons, karena variasi yang begitu mencolok dapat berdampak
langsung pada pengalaman pengguna.

Dalam konteks praktik operasional, Round Robin juga rentan menimbulkan ketidak stabilan jangka panjang.
Ketika server yang lebih jauh atau sedang mengalami peningkatan latensi mendapat giliran, pengguna yang
diteruskan ke server tersebut akan merasakan penurunan performa walaupun backend lokal sebenarnya masih
dapat memberikan respons yang jauh lebih baik. Kondisi ini hampir tidak mungkin dihindari dengan Round Robin
karena algoritma tersebut tidak memiliki kemampuan untuk mengenali backend mana yang sedang mengalami
penurunan performa. Hal ini berbanding terbalik dengan hasil pengujian menggunakan metode Layer-7 Geo-
Aware yang memanfaatkan nilai latensi terolah, di mana sistem hanya berpindah backend ketika memang
diperlukan, seperti ketika backend utama tidak sehat atau latensinya benar-benar naik secara konsisten.

Secara keseluruhan, hasil pengujian Round Robin ini menegaskan bahwa meskipun sederhana dan mudah
diterapkan, algoritma tersebut tidak cocok digunakan pada skenario yang melibatkan distribusi trafik lintas
wilayah geografis. Grafik menunjukkan bahwa Round Robin gagal menjaga kestabilan waktu respons dan
cenderung menghasilkan pengalaman pengguna yang tidak konsisten. Dengan tidak adanya mekanisme seleksi
berbasis performa, algoritma ini tidak mampu mengakomodasi jaringan modern yang sangat fluktuatif.
Perbandingan ini memperkuat temuan penelitian bahwa pendekatan Layer-7 dengan penyesuaian berbasis latensi
dan lokasi pengguna memberikan kinerja yang jauh lebih stabil, adaptif, dan andal dibandingkan metode Round
Robin tradisional.

5. Perbandingan Latensi Rata-rata antar backend
Tabel 1. Perbandingan Latensi Rata-rata antar backend (ms)

Tujuan/Sumber Backend Indonesia Backend Amerika
Pengguna Asia 45-60 ms 200-240 ms
Pengguna Amerika 210-250 ms 40-70 ms
Cross-Region 200+ ms 200+ ms

Tabel 1 menunjukkan bahwa latensi sangat dipengaruhi oleh lokasi geografis backend server yang
dipilih. Pada kondisi normal, koneksi pengguna Asia yang diarahkan ke backend Indonesia berada pada rentang
rendah yaitu 45-60 ms, sedangkan koneksi lintas-region menuju backend Amerika meningkat signifikan hingga
200-240 ms. Sebaliknya, pengguna Amerika mendapatkan latensi terbaik ketika trafik diproses oleh backend
Amerika. Temuan ini menegaskan bahwa pemilihan backend berbasis kedekatan geografis merupakan faktor
penting dalam menjaga performa dan pengalaman pengguna.

Tabel 2. Uji Performa dengan JMeter

Skenario Region Pengguna Target Backend Rata-rata Minimum Maksimum
Normal Asia-ID Indonesia 40-120 ms 35ms 130 ms

2163

Jurnal Teknologi dan Manajemen Industri Terapan (JTMIT) Vol. 4, No. 4, Dsember 2025 pp. 2154 - 2165
P-ISSN: 2829-0232 E-ISSN: 2829-0038

Failover Asia-US Amerika 500-620 ms 480 ms 650 ms
Failback Asia-ID Indonesia 35-100 ms 32 ms 110 ms

Tabel 2 hasil pengujian performance menggunakan Apache JMeter dalam tiga skenario: normal, failover,
dan failback. Pada kondisi normal, latensi berada pada rentang 40-120 ms yang merupakan kondisi ideal saat
backend Indonesia aktif. Ketika terjadi failover, seluruh trafik dialihkan ke backend Amerika sehingga latensi
meningkat tajam mencapai 500-620 ms. Setelah backend Indonesia pulih dan dilakukan failback, latensi
kembali turun ke kisaran 35-100 ms. Perbandingan ini membuktikan bahwa mekanisme Geo-Aware Failover
yang diterapkan mampu mempertahankan kontinuitas layanan dengan dampak minimum bagi pengguna.

Simpulan

Penelitian ini berhasil mengimplementasikan Layer-7 Load Balancer berbasis Geo-Aware Failover dengan
pemanfaatan metode Exponential Weighted Moving Average (EWMA) untuk pengambilan keputusan routing
secara adaptif di lingkungan multi-region. Pengujian pada jaringan internet publik menunjukkan bahwa sistem
mampu mempertahankan waktu respons rata-rata pada rentang 208-300 ms ketika backend utama beroperasi
normal. Ketika backend mengalami kegagalan, mekanisme failover dapat berlangsung dalam waktu kurang dari
satu detik tanpa memunculkan downtime yang dirasakan pengguna, serta layanan tetap tersedia dengan tingkat
ketersediaan di atas 99%. Setelah backend utama pulih, proses failback berlangsung stabil dan memastikan beban
kembali terdistribusi optimal.

Hasil ini memperlihatkan bahwa pendekatan adaptif berbasis lokasi dan tren latensi lebih unggul dibanding
algoritma statis seperti Round Robin dalam menjaga reliabilitas dan performa layanan web berskala global.
Kedepannya, sistem dapat dikembangkan dengan penambahan security-aware routing serta dukungan terhadap
lebih banyak region dan konteks layanan seperti edge computing dan multi-region Saas.

Daftar Pustaka

[1] H. Tussyadiah, R. M. Negara, and D. D. Sanjoyo, ‘“Distributed gateway-based load balancing in
software defined network,” Telkomnika (Telecommunication Comput. Electron. Control., vol.
18, no. 5, pp. 2352-2361, 2020, doi: 10.12928/ TELKOMNIKA.V1815.14851.

[2] F.Tapia, M. angel Mora, W. Fuertes, H. Aules, E. Flores, and T. Toulkeridis, “From monolithic
systems to microservices: A comparative study of performance,” Appl. Sci., vol. 10, no. 17,
2020, doi: 10.3390/app10175797.

[3] R. Tsyganok, “Methodology for Building Scalable Microservice Architectures on Go for High-
Load E-Commerce Platforms,” Univers. Libr. Eng. Technol., vol. 01, no. 02, pp. 42-46, 2024,
doi: 10.70315/uloap.ulete.2024.0102007.

[4] S.P.Sitorus, E. R. Hasibuan, and R. Rohani, “Analysis performance of content delivery network
by used Rateless Code method,” Sinkron, vol. 7, no. 4, pp. 2348-2359, 2022, doi:
10.33395/sinkron.v7i4.11651.

[5] Sree Priyanka Uppu, “Content Delivery Networks (CDNs) and live streaming: architecting
scalable delivery for high-demand events,” World J. Adv. Res. Rev., vol. 26, no. 2, pp. 2153—
2164, 2025, doi: 10.30574/wjarr.2025.26.2.1849.

[6] P.Dymora, M. Mazurek, and B. Sudek, “Comparative analysis of selected open-source solutions
for traffic balancing in server infrastructures providing www service,” Energies, vol. 14, no. 22,
2021, doi: 10.3390/en14227719.

[7] K. Prasojo and A. M. F. Fadhlurrahman, “Analisis Performa Load balancing pada Web Server
Menggunakan Nginx,” vol. 3, no. 1, pp. 30-39, 2025.

[8] I Technology, “Evaluation and Comparison of Load Balancing Algorithm Performance in the
Implementation of Weighted Least Connections and Round Robin in Cloud Computing
Environment,” J. Comput. Sci. Inf. Technol. Telecommun. Eng., vol. 6, no. 1, 2025, doi:
10.30596/jcositte.v6il.21731.

[9] B. Alankar, G. Sharma, H. Kaur, R. Valverde, and V. Chang, “Experimental setup for
investigating the efficient load balancing algorithms on virtual cloud,” Sensors (Switzerland),
vol. 20, no. 24, pp. 1-26, 2020, doi: 10.3390/520247342.

[10] V. Mohammadian, N. J. Navimipour, M. Hosseinzadeh, and A. Darwesh, “Fault-Tolerant Load

2164

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Jurnal Teknologi dan Manajemen Industri Terapan (JTMIT) Vol. 4, No. 4, Dsember 2025 pp. 2154 - 2165
P-ISSN: 2829-0232 E-ISSN: 2829-0038

Balancing in Cloud Computing: A Systematic Literature Review,” IEEE Access, vol. 10, pp.
12714-12731, 2022, doi: 10.1109/ACCESS.2021.3139730.

D. Sharmah and K. C. Bora, “A Survey on Dynamic Load Balancing Techniques in Cloud
Computing,” Lect. Notes Electr. Eng., vol. 1088, no. January, pp. 273-282, 2024, doi:
10.1007/978-981-99-6855-8_21.

H. F. Pérez and M. Galicia Garcia, “Journal of Applied Research and Technology,” J. Appl. Res.
Technol., vol. 18, pp. 245-258, 2020.

Z.Li, Z. Li, and W. Zhang, “Quality-Aware Task Allocation for Mobile Crowd Sensing Based
on Edge Computing,” Electron., vol. 12, no. 4, 2023, doi: 10.3390/electronics12040960.

T. Edge et al., “The Impact of Edge Computing on the Data Center The Impact of Edge
Computing on the Data Center”.

D. Agung Rizky Ananta, P. Hari Trisnawan, and K. Amron, “Implementasi Load Balancing
Web Server pada Software Defined Networking menggunakan Metode K-Nearest Neighbor (K-
NN),” J. Pengemb. Teknol. Inf. dan limu Komput., vol. 4, no. 10, pp. 3598-3606, 2020, [Online].
Available: http://j-ptiik.ub.ac.id

M. C. Saxena, M. Sabharwal, and P. Bajaj, “Review of SDN-based load-balancing methods,
issues, challenges, and roadmap,” Int. J. Electr. Comput. Eng. Syst., vol. 14, no. 9, pp. 1031-
1049, 2023, doi: 10.32985/ijeces.14.9.8.

O. M. A. Alssaheli, Z. Z. Abidin, N. A. Zakaria, and Z. A. Abas, “Software Defined Network
based Load Balancing for Network Performance Evaluation,” Int. J. Adv. Comput. Sci. Appl.,
vol. 13, no. 4, pp. 117-124, 2022, doi: 10.14569/1JACSA.2022.0130414.

H. Allam, “Reliability at the Edge: SRE for Distributed Cloud and IoT Platforms,” Int. J. Emerg.
Res. Eng. Technol., vol. 6, no. 2, pp. 39-52, 2025, doi: 10.63282/3050-922x.ijeret-v6i2p106.
V. S. Ramdoss, “Optimizing System Performance: Load Balancers and High Availability,”
Eastasouth J. Inf. Syst. Comput. Sci., vol. 1, no. 02, pp. 113-117, 2023, doi:
10.58812/esiscs.v1i02.435.

E. J. Garcia Fernandez de Castro, E. J. Garcia Puche, and D. Jabba Molinares, “Dynamic Low-
Latency Load Balancing Model to Improve Quality of Experience in a Hybrid Fog and Edge
Architecture for Massively Multiplayer Online (MMO) Games,” Appl. Sci., vol. 15, no. 12, pp.
1-29, 2025, doi: 10.3390/app15126379.

M. N. A. Rizqi and I. K. Dwi Nuryana, “Analisis Perbandingan Kinerja Algoritma Weighted
Round Robin dan Weighted Least Connection Menggunakan Load Balancing Nginx Pada
Virtual Private Server(VPS),” J. Informatics Comput. Sci., vol. 4, no. 01, pp. 67-75, 2022, doi:
10.26740/jinacs.v4n01.p67-75.

A. Asghar, A. Abbas, H. A. Khattak, and S. U. Khan, “Fog Based Architecture and Load
Balancing Methodology for Health Monitoring Systems,” IEEE Access, vol. 9, pp. 96189—
96200, 2021, doi: 10.1109/ACCESS.2021.3094033.

X. Shi, Y. Li, C. Jia, X. Hu, and J. Li, “L7LB: High Performance Layer-7 Load Balancing on
Heterogeneous Programmable Platforms,” IEEE INFOCOM 2023 - Conf. Comput. Commun.
Work. INFOCOM WKSHPS 2023, 2023, doi:
10.1109/INFOCOMWKSHPS57453.2023.10225882.

A. Syarif Aziz, “Analisis Kinerja Web Server Apache, Nginx, Open Litespeed, Dan Open
Resty,” J. Informatics Comput. Sci., vol. 11, no. 1, pp. 1-9, 2025.

D. Aldossary, E. Aldahasi, T. Balharith, and T. Helmy, “A Systematic Literature Review on
Load-Balancing Techniques in Fog Computing: Architectures, Strategies, and Emerging
Trends,” Computers, vol. 14, no. 6, pp. 1-42, 2025, doi: 10.3390/computers14060217.

2165

