Analisis Risiko Operasional Rantai Pasok dengan Pendekatan Supply Chain Operations Reference (SCOR) dan House of Risk (HOR)

(Studi Kasus: Hotway's Chicken Gresik)

Gilang Syaputra¹, Efta Dhartikasari Priyana², Deny Andesta³

1.2.3) Program Studi Teknik Industri, Fakultas Teknik, Universitas Muhammadiyah Gresik Jl. Sumatera No. 101, Gn. Malang, Randuagung, Kec. Kebomas, Gresik 61121
Email: gilangsp321@gmail.com, eftadhartikasari@umg.ac.id, deny_andesta@umg.ac.id

ABSTRAK

Sektor makanan cepat saji menghadapi risiko operasional tinggi akibat keterlambatan pasokan, fluktuasi permintaan, serta kesalahan manusia yang dapat mengganggu kontinuitas layanan. Namun, penelitian terdahulu umumnya berfokus pada manajemen risiko di industri manufaktur atau distribusi, sementara penerapannya pada restoran cepat saji masih terbatas. Penelitian ini untuk mendeteksi dan meminimalkan risiko operasional dalam rantai pasok restoran Hotway's Chicken Gresik menggunakan pendekatan *Supply Chain Operations Reference* (SCOR) dan *House of Risk* (HOR). Model SCOR digunakan untuk memetakan proses bisnis ke dalam lima tahap *plan, source, make, deliver,* dan *return* sedangkan HOR membantu mengenali sumber risiko serta menentukan prioritas mitigasi berdasarkan nilai *Aggregate Risk Potential* (ARP). Data dikumpulkan melalui wawancara dan kuesioner kepada staf operasional berpengalaman. Hasil penelitian menunjukkan terdapat 21 penyebab risiko dengan A8 (ketidakpatuhan terhadap SOP memasak dan kurangnya pelatihan staf) sebagai risiko paling kritis dengan nilai ARP sebesar 984. Strategi mitigasi utama meliputi penerapan daftar periksa SOP harian, program pelatihan rutin, kontrak pemasok jangka panjang, serta audit kualitas bahan baku. Penelitian ini berkontribusi pada pengembangan model manajemen risiko terintegrasi yang relevan untuk meningkatkan efisiensi dan keandalan operasional restoran cepat saji.

Kata kunci: SCOR, HOR, Risiko Operasional, Rantai Pasok, Makanan Cepat Saji, Mitigasi Risiko

ABSTRACT

The fast-food sector faces high operational risks due to supply delays, demand fluctuations, and human errors threatening service continuity. However, previous studies have mainly focused on risk management within manufacturing or distribution industries, leaving a gap in applying such models to fast-food restaurant supply chains. This research aims to identify and mitigate operational risks in the supply chain of Hotway's Chicken Gresik by applying the Supply Chain Operations Reference (SCOR) and House of Risk (HOR) frameworks. The SCOR model maps business processes into five stages: plan, source, make, deliver, and return, while the HOR model identifies risk events, risk agents, and mitigation priorities based on the Aggregate Risk Potential (ARP) value. Data were collected through interviews and questionnaires with experienced operational staff. The analysis identified 21 risk agents, with A8 (non-compliance with cooking SOPs and lack of staff training) emerging as the most critical, having the highest ARP score of 984. Key mitigation strategies include implementing daily SOP checklists, regular staff training, establishing long-term supplier contracts, and performing raw material quality audits. This study contributes to developing an integrated risk management framework that enhances operational efficiency and service reliability in the fast-food restaurant industry.

Keywords: SCOR, HOR, Operational Risk, Supply Chain, Fast Food, Risk Mitigation

Pendahuluan

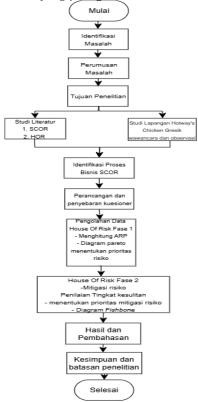
Industri makanan cepat saji di Indonesia menunjukkan pertumbuhan yang signifikan seiring dengan meningkatnya gaya hidup masyarakat yang menuntut kecepatan, kepraktisan, dan kemudahan dalam memperoleh makanan[1]. Dinamika pasar yang kompetitif menuntut setiap perusahaan untuk menjaga konsistensi kualitas produk, efisiensi proses operasional, serta ketepatan waktu pelayanan guna mempertahankan daya saingnya[2]. Namun demikian, sistem rantai pasok pada industri makanan cepat saji memiliki tingkat kompleksitas yang tinggi karena melibatkan berbagai aktor dan aktivitas yang saling terikat awal proses pengadaan kebutuhan, produksi, hingga distribusi kepada konsumen akhir. Kompleksitas ini menyebabkan meningkatnya potensi risiko operasional, seperti keterlambatan pasokan bahan, fluktuasi permintaan, penurunan kualitas bahan baku, hingga kesalahan manusia yang dapat berdampak langsung pada performa dan reputasi perusahaan [3][4].

Manajemen risiko rantai pasok menjadi salah satu pendekatan strategis untuk mengenali, menilai, serta mengendalikan potensi gangguan terhadap kelancaran operasional perusahaan. Salah satu kerangka kerja yang banyak digunakan untuk memetakan proses rantai pasok adalah *Supply Chain Operations Reference* (SCOR), yang membagi aktivitas utama menjadi lima proses yaitu *plan, source, make, deliver,* dan *return* [5][6]. Model ini memungkinkan perusahaan melakukan penelusuran sistematis terhadap titik-titik kritis yang berpeluang menimbukan risiko dan merumuskan strategi peningkatan kinerja operasional secara terukur [7]. Di sisi lain, metode *House of Risk* (HOR) bertujuan untuk mendeteksi kejadian risiko dan penyebabnya serta menetapkan prioritas pencegahan dari skor *Aggregate Risk Potential* (ARP)[8]. Integrasi SCOR dan HOR menunjukkan pendekatan komprehensif karena mampu menghubungkan pemetaan proses bisnis dengan analisis probabilitas serta dampak risiko. Beberapa penelitian menunjukkan efektivitas integrasi ini di sektor manufaktur dan industri berat, seperti industri furnitur dan baja dalam mengidentifikasi risiko dominan serta menentukan strategi mitigasi yang efisien [9] [10].

Namun demikian, terdapat kesenjangan penelitian bahwa penerapan integrasi model SCOR–HOR dalam sektor makanan cepat saji di Indonesia masih sangat terbatas. Sebagian besar penelitian terdahulu berfokus pada konteks manufaktur yang memiliki pola operasi stabil, sementara restoran cepat saji beroperasi dalam kondisi permintaan yang fluktuatif, bahan baku yang mudah rusak, serta ketergantungan tinggi terhadap kecepatan layanan dan faktor manusia [11]. Hal ini menunjukkan perlunya penelitian yang mengkaji penerapan model SCOR–HOR dalam konteks restoran cepat saji agar dapat menggambarkan karakteristik risiko operasional yang lebih dinamis dan kompleks.

Kebaruan penelitian ini terletak pada penerapan integrasi model SCOR dan HOR secara spesifik pada konteks operasional restoran cepat saji lokal, yaitu Hotway's Chicken Gresik. Pendekatan ini memberikan gambaran faktual mengenai sumber risiko utama dan strategi mitigasi yang relevan dengan kondisi nyata di lapangan, sehingga hasilnya lebih aplikatif bagi peningkatan efisiensi dan kualitas layanan di sektor makanan cepat saji.

Tabel 1. Data faktual operasional Hotway's Chicken Gresik


No	Jenis Data	Rincian Data	Nilai / Temuan Utama	Dampak terhadap Risiko Operasional
1	Data Keluhan Pelanggan	Total keluhan yang diterima melalui Google Maps selama September 2024 - September 2025.	42 keluhan/tahun, dengan dominasi keluhan terkait keterlambatan pesanan dan kualitas makanan	Mengindikasikan adanya ketidakkonsistenan pada proses Deliver dan Make.
2	Frekuensi Keterlamba tan Bahan Baku	Data keterlambatan pengiriman ayam, bumbu, dan kemasan dari pemasok utama.	3–4 kali per bulan (±45 kali/tahun) dengan rata-rata keterlambatan 3-5 jam.	Menunjukkan lemahnya koordinasi pasokan pada tahap Source dan Plan.
3	Data Produk Rusak / Reject	Produk gagal karena kesalahan masak, kemasan bocor, atau penyimpanan tidak tepat.	5-10 kali per bulan (rata-rata 7,5 kasus/bulan atau ±90 kasus/tahun).	Menggambarkan masalah kualitas pada tahap Make dan Deliver.
4	Jumlah Pelatihan Staf per Tahun	Pelatihan teknis, SOP dapur, dan kebersihan karyawan.	Tidak ada pelatihan resmi selama tahun 2024.	Potensi tinggi untuk pelanggaran SOP dan human error
5	Kesalahan Karyawan (Human Error)	Kesalahan input pesanan, salah porsi, atau prosedur tidak sesuai SOP.	2–5 kali per bulan (rata-rata 3,5 kasus/bulan atau ±42 kasus/tahun).	Menunjukkan rendahnya kepatuhan terhadap SOP dan pengawasan operasional.

Berdasarkan data operasional Hotway's Chicken Gresik, masih terdapat berbagai kendala yang menurunkan kinerja rantai pasok, seperti 42 keluhan pelanggan per tahun, keterlambatan pasokan 3–4 kali per bulan, serta 5–10 produk rusak setiap bulan. Ketiadaan pelatihan staf dan tingginya kesalahan kerja turut memperburuk stabilitas operasional. Dengan demikian, penelitian ini dimaksudkan untuk mengidentifikasi risiko operasional dalam rantai pasok restoran cepat saji Hotway's Chicken Gresik menggunakan pendekatan integratif SCOR dan HOR, serta merumuskan strategi mitigasi yang efektif guna mengoptimalkan efisiensi serta mutu layanan.

Metode Penelitian

Penelitian ini menerapkan pendekatan deskriptif kuantitatif dengan mengintegrasikan dua model analisis utama, yaitu *Supply Chain Operations Reference* (SCOR) dan *House of Risk* (HOR). Pemilihan kedua metode tersebut didasarkan pada pertimbangan metodologis bahwa model SCOR mampu menggambarkan struktur dan alur kegiatan dalam sistem rantai pasok secara sistematis, sedangkan *House of Risk* (HOR) dapat mengidentifikasi penyebab risiko serta menentukan tingkat prioritas mitigasi berdasarkan perhitungan *Aggregate Risk Potential*

(ARP). Kombinasi keduanya memberikan hasil analisis yang menyeluruh, mulai dari tahap pemetaan proses bisnis hingga penentuan strategi pencegahan risiko yang paling efektif dan realistis diterapkan.

Gambar 1. Flowchart penelitian

Pengumpulan Data

Data dikumpulkan melalui wawancara mendalam dan distribusi kuesioner ditujukan untuk staf internal yang berperan langsung dalam aktivitas rantai pasok di Hotway's Chicken Gresik. Responden penelitian berjumlah empat orang, terdiri atas PIC gudang, PIC dapur, PIC frontline, serta pemilik usaha. Pemilihan responden menggunakan teknik *purposive sampling*, yaitu pemilihan secara sengaja terhadap individu yang dianggap memiliki pemahaman dan pengalaman operasional yang relevan untuk memberikan informasi akurat mengenai potensi risiko di sepanjang rantai pasok restoran[12] [13].

Tahapan Penelitian

Pemetaan Proses Rantai Pasok (SCOR)

Tahap awal penelitian dilakukan dengan cara memetakan keseluruhan aktivitas dalam rantai pasok menggunakan kerangka kerja model *Supply Chain Operations Reference* (SCOR) yang terdiri atas lima elemen utama, yaitu *plan, source, make, deliver*, dan *return*. Melalui pemetaan ini, setiap tahapan proses bisnis dapat dianalisis secara sistematis untuk mengidentifikasi aliran material, informasi, serta potensi risiko yang muncul di setiap titik aktivitas rantai pasok.

Identifikasi Risiko

Penelitian ini kemudian mengidentifikasi potensi kejadian risiko (*risk event*) beserta faktor penyebabnya (*risk agent*) dengan mengacu pada hasil wawancara mendalam, observasi langsung di lapangan, serta analisis data operasional perusahaan. Langkah ini bertujuan untuk memperoleh gambaran menyeluruh mengenai sumbersumber risiko yang berpotensi mengganggu kelancaran proses rantai pasok, baik dari aspek manusia, peralatan, metode kerja, maupun pasokan bahan baku.

Analisis House of Risk (HOR) Fase 1

Tahap ini menilai seberapa besar pengaruh dan kemungkinan terjadinya risiko melalui skala penilaian severity (tingkat dampak) dan occurrence (frekuensi kejadian) dengan rentang nilai 1–10 [14]. Hasil penilaian dipakai untuk menghitung skor Aggregate Risk Potential (ARP) [15] menggunakan rumus :

$$ARP_{i} = O_{i} \Sigma S_{i} R_{ij}$$
 (1)

Keterangan:

ARP : Menunjukkan besaran kemampuan risiko agregat yang diperoleh dari hasil perhitungan.

Oj : Menggambarkan nilai tingkat kemungkinan terjadinya suatu penyebab risiko.

Si : Merepresentasikan tingkat keparahan dari setiap kejadian risiko yang teridentifikasi.

Rij : Menunjukkan skor hubungan atau korelasi antara agen risiko ke-j dengan kejadian risiko ke-i.

I : Kejadian risiko pertama, kedua, ... n

J: Agen pertama, kedua, ... n yang terancam bahaya

Langkah selanjutnya adalah menyusun matriks korelasi untuk mengidentifikasi hubungan kausal antara kejadian risiko dan penyebab risiko. Matriks korelasi terkait disusun dengan menggunakan skala *ordinal* empat tingkat, di mana skor 0 menyatakan tidak adanya hubungan, skor 1 menggambarkan tingkat korelasi yang rendah, skor 3 menyatakan korelasi menengah, sedangkan skor 9 mengindikasikan adanya hubungan yang kuat atau tinggi antara kejadian risiko dan agen risikonya. Kemudian dilanjutkan dengan perhitungan ARP untuk setiap agen risiko, yang menjadi tahap akhir dari fase pertama.

Diagram Fishbone

Untuk mendukung identifikasi penyebab risiko, penelitian ini menggunakan diagram *fishbone* yang memetakan sumber risiko utama dari enam faktor, yaitu manusia (*man*) seperti kesalahan kerja dan kurangnya pelatihan; peralatan (*machine*) seperti kerusakan dan keterlambatan perawatan; metode (*method*) seperti SOP yang tidak jelas dan lemahnya pengawasan; bahan baku (*material*) seperti keterlambatan pasokan dan ketidaksesuaian spesifikasi; lingkungan (*environment*) seperti suhu penyimpanan yang tidak stabil; serta pengukuran (*measurement*) seperti pencatatan stok dan data permintaan yang tidak akurat.

Analisis House of Risk (HOR) Fase 2

Pada proses ini, penyebab risiko utama ditangani melalui pengusulan alternatif tindakan pencegahan (*preventive action*). Setiap tindakan dievaluasi menggunakan dua ukuran, yaitu tingkat efektivitas (*Effectiveness*) dan tingkat kesulitan implementasi (*Difficulty*) [16] [17]. Nilai efektivitas total dihitung menggunakan rumus:

$$TE_{\mathbf{k}} = \sum_{\mathbf{j}} ARP_{\mathbf{j}} E_{\mathbf{j}\mathbf{k}}$$
 (2)

Tek : Total efektivitas yang dihasilkan dari setiap strategi mitigas.

ARP : Skor risiko agregat yang merefleksikan derajat urgensi masing-masing agen risiko.

Ejk: Derajat hubungan antara penyebab risiko dan rancangan pencegahan yang diterapkan

Selanjutnya, dihitung rasio *Effectiveness to Difficulty* (ETD) guna menentukan utama rancangan pencegahan dengan rumus:

$$\mathbf{ETD}_{\mathbf{k}} = \underline{\mathbf{TEk}} \tag{3}$$

Dk

ETDk : Tingkat efektivitas yang diperoleh dari perbandingan antara efektivitas dan tingkat kesulitan penerapan

TEk : Total efektivitas pada masing-masing strategi pencegahan.

Dk: Tingkat kesulitan pelaksanaan tindakan pencegahan

Strategi mitigasi dengan nilai ETD tertinggi diprioritaskan sebagai tindakan paling efisien dan berdampak besar terhadap penurunan risiko[18] [19].

Perumusan Strategi Mitigasi

Tahap akhir adalah perumusan rekomendasi tindakan mitigasi berdasarkan hasil perhitungan ETD. Strategi ini diadaptasi agar sesuai dengan sumber daya, karakteristik operasional, dan kemampuan implementasi di lingkungan restoran cepat saji.

Hasil Dan Pembahasan

Hasil kuesioner menunjukkan bahwa para ahli di Hotway's Chicken Gresik berhasil mengidentifikasi beberapa proses utama dalam *Supply Chain Management* (SCM). Proses-proses tersebut merujuk pada model SCOR dan dirangkum dalam Tabel 2.

Tabel 2. Proses bisnis Hotway's Chicken Gresik

Proses SCOR	Aktivitas Utama	Kode
	Memprediksi permintaan harian dan kebutuhan bahan baku	C1
Plan	Menjadwalkan produksi berdasarkan permintaan pelanggan	C2
	Merencanakan persediaan dan pengelolaan stok	C3
	Memesan ayam, bumbu, sayuran, minyak, dan kemasan dari pemasok	C4
C	Menerima dan memeriksa bahan baku (pemeriksaan jumlah dan kualitas)	C5
Source	Menyimpan bahan baku (penyimpanan dingin untuk ayam, penyimpanan kering untuk bumbu/kemasan)	C6
Make	Menyiapkan ayam	C7

	Menggoreng ayam menggunakan deep fryer sesuai SOP	C8
	Memasak telur orak-arik dan bayam krispi	C9
	Membagi porsi dan menata komponen menu	C10
	Melakukan pemeriksaan kualitas sebelum pengemasan	C11
	Menerima pesanan pelanggan (langsung di toko, online food)	C12
Deliver	Memasukkan pesanan ke sistem POS dan mengirimkan ke dapur melalui printer	C13
Denver	Mengemas makanan dan minuman	C14
	Menyerahkan pesanan kepada pelanggan atau pengemudi daring	C15
	Menangani keluhan pelanggan terkait layanan atau kualitas produk	C16
Return	Memproses pengembalian produk (misalnya rusak, tidak lengkap)	C17
	Mencatat umpan balik dan mengevaluasi kualitas layanan	C18

Identifikasi Risk Event dan Risk Agent

Identifikasi kejadian risiko dilakukan dengan memetakan aktivitas rantai pasok perusahaan. Agen risiko merupakan faktor penyebab yang memicu terjadinya risiko tersebut, di mana masing-masing memiliki karakteristik bawaan yang unik[20]. Rincian lengkap dari identifikasi ini ditampilkan dalam Tabel 3 dan Tabel 4.

Tabel 3. Risk Event Hotway's Chicken Gresik

Kode	Risk Event	Severity 1–10
E1	Kehabisan stok akibat kesalahan perhitungan	5
E2	Keterlambatan pengiriman bahan baku	7
E3	Bahan baku tidak sesuai spesifikasi (kualitas, kuantitas, atau rusak/busuk)	5
E4	Bahan baku kedaluwarsa	6
E5	Produk terlalu matang atau kurang matang	4
E6	Kontaminasi makanan dengan kotoran atau benda asing	3
E7	Ketidakkonsistenan dalam porsi makanan	8
E8	Kerusakan peralatan selama operasional	6
E9	Bahan baku habis di tengah proses produksi	7
E10	Kesalahan input pesanan pada sistem POS	5
E11	Antrian panjang pada jam sibuk	7
E12	Printer bermasalah (pesanan tidak terkirim ke dapur)	5
E13	Paket pesanan tidak lengkap	7
E14	Kemasan bocor atau rusak	6
E15	Tumpahan minuman saat penyerahan	6
E16	Pengemudi tidak sabar akibat keterlambatan	6
E17	Keluhan pelanggan terhadap rasa atau tampilan makanan	6
E18	Lingkungan outlet kotor atau tidak nyaman	6

Tabel tersebut menunjukkan berbagai kejadian risiko pada operasional Hotway's Chicken Gresik beserta tingkat keparahannya dalam skala 1–10. Risiko dengan nilai tinggi seperti keterlambatan bahan baku (E2), ketidakkonsistenan porsi (E7), dan antrian panjang (E11) berdampak besar pada kepuasan pelanggan dan efisiensi layanan. Risiko sedang seperti bahan baku kedaluwarsa (E4) dan kemasan rusak (E14) mempengaruhi mutu produk, sedangkan risiko rendah seperti kontaminasi makanan (E6) tetap penting karena menyangkut keamanan dan reputasi. Secara keseluruhan, tabel ini menjadi dasar untuk analisis HOR Fase 1 dalam menentukan prioritas mitigasi risiko

Tabel 4. Riks Agent Hotway's Chicken Gresik

Kode	Agen Risiko (Risk Agent)	Tingkat Kemungkinan Terjadi (Occurrence 1–10)
A1	Keterlambatan pengiriman dari pemasok / tidak ada kontrak tetap	8
A2	Kurangnya pemeriksaan kualitas bahan baku	6
A3	Peramalan permintaan yang tidak akurat	5
A4	Sistem FIFO tidak diterapkan dan pengendalian penyimpanan lemah	3
A5	Kurangnya pelatihan staf gudang dan pencatatan inventori yang buruk	4
A6	Tidak adanya jadwal rotasi bahan yang efektif	6
A7	Komunikasi yang buruk antara gudang dan dapur	7
A8	SOP memasak tidak diikuti dan kurangnya pelatihan staf	8
A9	Sanitasi dapur buruk dan tidak ada pembersihan rutin	6
A10	Standar operasional produk tidak diterapkan dan kurang pelatihan staf	4

A11	Tidak ada jadwal pemeliharaan rutin	8
A12	Estimasi kebutuhan bahan tidak akurat dan koordinasi	7
A 12	lemah	_
A13	Kurangnya pelatihan penggunaan sistem POS	3
A14	Tidak ada sistem pengaturan shift pada jam sibuk	6
A15	Perangkat POS atau printer usang / rusak	3
A16	Tidak ada pemeriksaan akhir sebelum penyerahan	6
AIU	pesanan	U
A17	Kualitas kemasan rendah dan tidak dilakukan pengujian	6
A18	Penanganan tidak hati-hati saat pengemasan	5
A19	Tidak ada sistem prioritas untuk pesanan daring	4
A20	SOP penyajian dan resep standar tidak diterapkan	7
A21	Tidak ada jadwal pembersihan outlet dan kurangnya	4
AZI	pengawasan	4

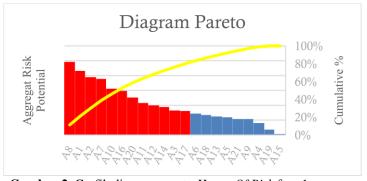
Tabel tersebut menampilkan agen risiko yang menjadi penyebab gangguan operasional di Hotway's Chicken Gresik beserta tingkat kemungkinan terjadinya dalam skala 1–10. Nilai tinggi seperti pada A1 (keterlambatan pemasok), A8 (SOP tidak diikuti), dan A11 (tidak ada jadwal pemeliharaan) menunjukkan risiko yang sering terjadi dan berdampak besar pada operasional. Agen dengan nilai sedang seperti A2 (kurangnya pemeriksaan kualitas) dan A7 (komunikasi buruk) mencerminkan kelemahan koordinasi internal. Secara keseluruhan, tabel ini menjadi dasar analisis *House of Risk* (HOR) Fase 1 untuk memutiskan prioritas mitigasi berdasarkan tingkat frekuensi dan dampaknya

House Of Risk Fase 1

Fase pertama dari metodologi *House Of Risk* (HOR) berfokus pada perhitungan dan agregasi nilai ARP. Hasil perhitungan tersebut menjadi dasar dalam menentukan prioritas risiko melalui proses pemeringkatan, sehingga dapat mengidentifikasi risiko paling kritis yang membutuhkan penanganan segera. [21].

Tabel 5. House Of Risk fase 1

Risk										1	Risk A	Agen	t									erit y
Even t	A 1	A 2	A 3	A 4	A 5	A 6	A 7	A 8	A 9	A 1 0	A 1 1	A 1 2	A 1 3	A 1 4	A 1 5	A 1 6	A 1 7	A 1 8	A 1 9	A 2 0	A 2 1	
E1	9		9		9		9					3										5
E2	9	1																				7
E3		9														3						5
E4		9		9	3	3										1						6
E5								9		9												4
E6						3		3	9	1						3						3
E7		1						9		9										9		8
E8								1			9											6
E9			3			3	9					3										7
E10										9			9									5
E11														9								7
E12													1		1							5
E13												3				9						7
E14																1	9					6
E15																		9				6
E16																			3			6
E17								3														6
E18																					9	6
Occ																						
uran	8	6	5	3	4	6	7	8	6	4	8	7	5	6	3	6	6	5	4	7	4	
ce																						
	8	7	3	1	2	2	7	9	2	6	4	3	2	3	1	5	3	2	7	5	2	
ARP	6	8	3	6	4	8	5	8	1	2	3	9	2 5	3 7	1 5	5 9	3 2	2 7	2	0	1	
	4	0	0	2	0	8	6	4	6	4	2	9	0	8	3	4	4	0	2	4	6	
Prior	2	3	1	1	1	1	4	1	1	5	0	9	1	1	2	6	1	1	2	7	1	
itas	2	3	1	9	6	3	4	1	7	5	8	9	5	0	1	6	2	4	0	/	7	

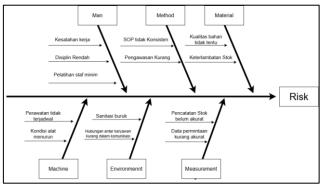

Sev

Berikut ini contoh perhitungan ARPj = Oj Σ Si Rij ARP (A1) = 8 x [(9x5) + (9x7)] = 864

Hasil *House Of Risk* (HOR) Fase 1 pada Tabel 5 menunjukkan bahwa agen risiko A8 (SOP memasak tidak diikuti dan kurangnya pelatihan staf) memiliki nilai ARP tertinggi sebesar 984, menandakan bahwa faktor sumber daya manusia menjadi penyebab utama gangguan operasional di Hotway's Chicken Gresik. Nilai tinggi tersebut menunjukkan bahwa ketidakpatuhan terhadap SOP dan minimnya pelatihan berdampak besar pada kualitas produk dan efisiensi kerja. Agen risiko lain seperti A1 (keterlambatan pemasok) dan A2 (kurangnya pemeriksaan kualitas bahan baku) juga berkontribusi besar terhadap gangguan di tahap *source* dan *make*. Hasil ini sejalan dengan penelitian "Analisis Mitigasi Pada Rantai Pasok Produk Makanan Dengan Pendekatan *House Of Risk* (Hor)" [22] yang menegaskan bahwa integrasi metode SCOR–HOR efektif dalam mengidentifikasi risiko dominan berbasis SDM dan pasokan, serta mendukung temuan [23] mengenai pentingnya pengendalian perilaku kerja dan standarisasi proses dalam menjaga mutu operasional. Tahapan berikutnya dilakukan dengan memeringkat agen risiko menggunakan diagram pareto untuk menentukan prioritas mitigasi, di mana sekitar 20% agen risiko utama (A8, A1, A2, dan A7) berkontribusi terhadap 80% total potensi risiko [24] [25]. Hasil analisis pareto untuk agen risiko disajikan pada Tabel 8, dan diagram Pareto yang sesuai ditampilkan pada Gambar 2.

Tabel 6. Peringkat nilai ARP dari tertinggi hingga terendah

Rank	Risk Agent	Nilai ARP	Cumulative ARP	%ARP	Cumulative% ARP
1	A8	984	984	6%	6%
2	A1	864	1848	11%	16%
3	A2	780	1644	9%	26%
4	A7	756	1536	9%	35%
5	A10	624	1380	8%	43%
6	A16	594	1218	7%	50%
7	A20	504	1098	6%	56%
8	A11	432	936	5%	61%
9	A12	399	831	5%	66%
10	A14	378	777	4%	70%
11	A3	330	708	4%	75%
12	A17	324	654	4%	78%
13	A6	288	612	4%	82%
14	A18	270	558	3%	85%
15	A13	250	520	3%	88%
16	A5	240	490	3%	91%
17	A21	216	456	3%	93%
18	A9	216	432	2%	96%
19	A4	162	378	2%	98%
20	A19	72	234	1%	99%
21	A15	15	87	1%	100%


Gambar 2. Grafik diagram pareto House Of Risk fase 1

Gambar 2 memperlihatkan terdapat 12 agen risiko yang terletak di sisi kiri batas 80%, yang dikategorikan sebagai prioritas utama dalam penyusunan strategi mitigasi untuk menekan atau menghilangkan potensi terjadinya risiko operasional pada proses rantai pasok.

Diagram Fishbone

Untuk memperdalam hasil identifikasi pada *House Of Risk* (HOR) Fase 1, dilakukan analisis akar penyebab risiko menggunakan diagram *fishbone* untuk menggambarkan hubungan sebab-akibat antara risiko utama dan faktor pemicunya. Berdasarkan hasil *House Of Risk* (HOR) Fase 1, risiko prioritas seperti A8 (SOP tidak diikuti dan kurangnya pelatihan staf), A1 (keterlambatan pemasok), dan A2 (kurangnya pemeriksaan kualitas bahan

baku) dianalisis lebih lanjut dan diketahui berasal dari enam kategori utama: manusia, peralatan, metode, bahan, lingkungan, dan pengukuran. Hasilnya menunjukkan bahwa faktor manusia dan metode kerja menjadi penyebab dominan yang memengaruhi stabilitas operasional. Analisis ini memperkuat hasil HOR Fase 1 serta menjadi dasar dalam penyusunan strategi mitigasi pada HOR Fase 2 agar tindakan pencegahan dapat lebih terarah pada akar masalah utama.

Gambar 3. Diagram Fishbone

Preventive Action

Perbaikan yang diusulkan ditujukan untuk meningkatkan efektivitas proses bisnis *Supply Chain Management* (SCM). Usulan ini didasarkan pada analisis diagram pareto, yang mengidentifikasi penyebab risiko dengan nilai kumulatif sebesar 80%[26]. Selanjutnya, sebuah rencana tindakan mitigasi diusulkan dan diperingkat berdasarkan tingkat kesulitan dalam pelaksanaannya. Analisis menghasilkan 12 penyebab dominan yang memerlukan tindakan perbaikan segera untuk mengatasi permasalahan yang telah diidentifikasi.

Tabel 7. Preventive action

24001.11.07		
Risk Agent	Preventive action	Ko de
SOP memasak tidak diikuti, kurangnya pelatihan staf	Daftar periksa harian SOP & pelatihan rutin	PA1
Keterlambatan pengiriman dari pemasok / tidak ada kontrak tetap	Kontrak pemasok & pemasok cadangan	PA2
Kurangnya pemeriksaan kualitas bahan baku	Formulir standar QC & pemeriksaan kualitas	PA3
Komunikasi yang buruk antara gudang dan dapur	Komunikasi terintegrasi & pengarahan rutin	PA4
Standar operasional produk tidak diterapkan dan kurang pelatihan staf	Audit SOP & pelatihan penyegaran (refresher training)	PA5
Tidak ada pemeriksaan akhir sebelum penyerahan pesanan	Daftar periksa akhir & penanggung jawab (PIC) khusus	PA6
SOP penyajian dan resep standar tidak diterapkan	SOP visual & pemeriksaan acak	PA7
Tidak ada jadwal pemeliharaan rutin	Jadwal pemeliharaan & buku log perawatan	PA8
Estimasi kebutuhan bahan tidak akurat dan koordinasi lemah	Peramalan sederhana & koordinasi rutin	PA9
Tidak ada sistem manajemen shift pada jam sibuk	Jadwal shift berbasis data & rotasi staf	PA1 0
Peramalan permintaan tidak akurat	Peramalan berbasis data historis & pembaruan mingguan	PA1 1
Kualitas kemasan rendah dan tidak ada pengujian kemasan	Audit pemasok & uji sampel kemasan	PA1 2

House Of Risk fase 2

Analisis *House Of Risk* (HOR) Fase 2 menilai prioritas agen risiko melalui perumusan tindakan pencegahan untuk meminimalkan dampak operasional [27]. Setiap strategi penanganan diidentifikasi (Tabel 8) dan dievaluasi berdasarkan tingkat kompleksitas penerapan yang diukur menggunakan *Degree of Difficulty* (Dk) [28][29].

Tabel 8. Skala kesulitan

Skala Kesulitan	Deskripsi
3	Tindakan mitigasi relatif mudah untuk diterapkan.
4	Tindakan mitigasi memerlukan upaya lebih dan tergolong sulit diterapkan.
5	Tindakan mitigasi memiliki kompleksitas tinggi sehingga sangat sulit untuk diterapkan.

Tahap awal HOR Fase 2 diawali perumusan strategi pencegahan, diikuti pemetaan keterkaitan antara agen risiko dan strategi yang diusulkan. Selanjutnya, dilakukan perhitungan TEk dan Dk untuk memperoleh rasio ETDk sebagai dasar penentuan prioritas strategi dengan peringkat tertinggi. Penilaian tingkat kesulitan penerapan

mempertimbangkan aspek biaya dan ketersediaan sumber daya. Hasil perhitungan ETDk tersebut disajikan pada Tabel 9.

Tabel 9. House Of Risk fase 2

						ubci 7. 1.	TO HISC O	J Ittisic i	- use =					
	Risk	Preventive Action											ARP	
	Agent	PA1	PA2	PA3	PA4	PA5	PA6	PA7	PA8	PA9	PA10	PA11	PA12	AKI
	A8	9				3								984
	A1		9											864
	A2			9										780
	A7				9									756
	A10	9				9								624
	A16			9			9							594
	A20	9				3		9						504
	A11								9					432
	A12									9				399
	A14										9			378
	A3											9		330
	A17												9	324
	TD1.	1900	777	1236	680	1008	534	453	388	2501	2402	2970	2016	
	TEk	8	6	6	4	0	6	6	8	3591	3402	2970	2916	
	Dk	3	3	3	3	3	3	3	4	4	3	3	5	
	ETD1	(22)	259	4100	226	2260	178	151	072	897.7	1124	000	583.	
	ETDk	6336	2	4122	8	3360	2	2	972	5	1134	990	2	
	Rank	1	4	2	5	3	6	7	10	11	8	9	12	
_		. 1 1	•.	TTC1 (D.A	45	DD' D'	1 5/0	004)	(0 (2	4) . (0 5	0.4\1 1	0000	1 1	

Berikut ini contoh perhitungan TEk (PA1) = Σ ARPj . Ejk = [(9x984) + (9x624) + (9x504)] = 19008 sedangkan untuk ETd (PA1) = 19008/3 = 6336

Hasil perhitungan *House Of Risk* (HOR) Fase 2 menunjukkan bahwa dari 12 usulan tindakan pencegahan, terdapat beberapa strategi dengan prioritas tertinggi berdasarkan nilai ETDk). Tindakan PA1 menempati peringkat pertama dengan nilai ETDk sebesar 6336, diikuti PA3 sebesar 4122, dan PA5 sebesar 3360. Ketiga tindakan tersebut dianggap paling efektif karena langsung berkaitan dengan agen risiko utama A8 (SOP memasak tidak diikuti dan kurangnya pelatihan staf) yang memiliki nilai ARP tertinggi. Strategi ini berfokus pada peningkatan kepatuhan SOP, pelatihan rutin karyawan, dan pengawasan kualitas produk secara berkala untuk menurunkan potensi risiko operasional. Sementara itu, tindakan dengan nilai ETDk terendah seperti PA12 menempati prioritas terakhir karena memerlukan sumber daya dan waktu implementasi yang lebih besar dibandingkan dampak efektivitasnya. Temuan ini sejalan dengan [30] yang menyatakan bahwa integrasi SCOR–HOR efektif dalam menentukan prioritas mitigasi, serta mendukung [31] yang menekankan pentingnya pengendalian perilaku dan standarisasi proses dalam menjaga stabilitas operasional. Dengan demikian, penelitian ini memberikan kontribusi empiris bahwa penerapan integratif SCOR–HOR mampu mengidentifikasi sumber risiko utama sekaligus menghasilkan strategi mitigasi yang efektif dan aplikatif bagi peningkatan kinerja rantai pasok di sektor makanan cepat saji, sebagaimana dirangkum dalam Tabel 10.

Tabel 10. Rekapitulasi prioritas penanganan strategis

Peringkat	Preventive Action	Kode
1	Daftar periksa harian SOP dan pelatihan rutin	PA1
2	Formulir standar QC dan pemeriksaan kualitas	PA3
3	Audit SOP dan pelatihan penyegaran (refresher training)	PA5
4	Kontrak pemasok dan pemasok cadangan	PA2
5	Komunikasi terintegrasi dan pengarahan rutin	PA4
6	Daftar periksa akhir dan penanggung jawab (PIC) khusus	PA6
7	SOP visual dan pemeriksaan acak	PA7
8	Jadwal shift berbasis data dan rotasi staf	PA10
9	Peramalan berbasis data historis dan pembaruan mingguan	PA11
10	Jadwal pemeliharaan dan buku catatan perawatan (log book)	PA8
11	Peramalan sederhana dan koordinasi rutin	PA9
12	Audit pemasok dan uji sampel kemasan	PA12

Simpulan

Dengan mengombinasikan pendekatan SCOR dan HOR, penelitian ini berhasil memetakan sumber risiko operasional serta menerapkan strategi mitigasi yang relevan pada rantai pasok Hotway's Chicken Gresik. Pemetaan proses bisnis berdasarkan model SCOR membantu menemukan titik-titik kritis dalam aktivitas

operasional restoran, sedangkan hasil analisis *House Of Risk* (HOR) Fase 1 menunjukkan bahwa agen risiko A8 (SOP memasak tidak diikuti dan kurangnya pelatihan staf) memiliki nilai ARP tertinggi sebesar 984, sehingga menjadi fokus utama mitigasi. Melalui *House Of Risk* (HOR) Fase 2, tindakan pencegahan prioritas yang direkomendasikan meliputi PA1 (Daftar periksa harian SOP & pelatihan rutin), PA3 (Formulir standar QC & pemeriksaan kualitas), dan PA5 (Audit SOP dan pelatihan penyegaran), yang terbukti paling efektif dalam menekan potensi risiko serta meningkatkan efisiensi operasional dan kualitas layanan. Secara praktis, hasil ini menegaskan pentingnya peningkatan disiplin kerja, pengawasan mutu, dan hubungan dengan pemasok, sedangkan secara akademis memperkuat bukti empiris efektivitas integrasi SCOR–HOR dalam konteks industri makanan cepat saji. Keterbatasan penelitian ini terletak pada lingkup objek yang terbatas pada satu outlet, sehingga studi lanjutan disarankan melibatkan lebih banyak cabang dan metode pembobotan seperti AHP atau FMEA untuk hasil yang lebih komprehensif.

Daftar Pustaka

- [1] Y. Tarigan And S. S. Mutmainah, "Mitigation Of Supply Chain Risk Management In Supply Of Production Raw Materials Using The House Of Risk (Hor) Method," *J. Akuntansi, Ekon. Dan Manaj. Bisnis*, Vol. 11, No. 1, Pp. 92–105, Jul. 2023, Doi: 10.30871/Jaemb.V11i1.5133.
- [2] S. Alam, R. R. Putri, And S. Hartini, "Mitigating Supply Chain Risks In The Traditional Beverage Industry With The House Of Risk (Hor) Method," *J. Ilm. Tek. Ind.*, Pp. 17–30, Jun. 2025, Doi: 10.23917/Jiti.V24i01.8157.
- [3] Jiroyah & Muflihah, "Integrasi Model Scor Dan House Of Risk Untuk Menentukan Mitigasi Risiko Supply Chain Management Pada Proses Produksi (Studi Kasus Di Cv. Ar Rouf) | Jurnal Industri Dan Teknologi Samawa." Accessed: Sep. 09, 2025. [Online]. Available: https://Jurnal.Uts.Ac.Id/Index.Php/Jitsa/Article/View/1969
- [4] R. Ma Et Al., "Analisis Kinerja Rantai Pasok Halal Dengan Supply Chain Operation Reference Dan Process Maturity Model (Studi Kasus: Resto Abg Bumes)," Pros. Simp. Nas. Rekayasa Apl. Peranc. Dan Ind., Pp. 42–52, 2023, Accessed: Oct. 16, 2025. [Online]. Available: Https://Proceedings.Ums.Ac.Id/Rapi/Article/View/3481
- [5] Suci Amanda, F. S. Lubis, M. Hartati, T. Nurainun, And V. Devani, "Perancangan Strategi Risiko Rantai Pasok Dengan Menggunakan Metode Supply Chain Operation Reference (Scor) Dan House Of Risk (Hor) (Studi Kasus: Ukm Mrp.Payakumbuh)," *Matrik J. Manaj. Dan Tek. Ind. Produksi*, Vol. 25, No. 1, Pp. 93–98, Sep. 2024, Doi: 10.30587/Matrik.V25i1.8449.
- [6] M. Sabilarrosyad, M. Jufriyanto, And H. Hidayat, "Risk Mitigation Analysis In The Supply Chain Of Pt. Abc Using The House Of Risk Method And Scor," *G-Tech J. Teknol. Terap.*, Vol. 8, No. 4, Pp. 2313–2323, Oct. 2024, Doi: 10.70609/Gtech.V8i4.5038.
- [7] C. E. Wijaya, Ahmad, And C. O. Doaly, "Analisis Manajemen Risiko Pada Aktivitas Supply Chain Perusahaan Baja Di Indonesia Menggunakan Metode House Of Risk," *J. Mitra Tek. Ind.*, Vol. 1, No. 3, Pp. 250–259, Dec. 2022, Doi: 10.24912/Jmti.V1i3.23501.
- [8] F. F. Asrory, A. D. H. Wisnugroho, And R. Yahya, "Analisis Risiko Rantai Pasok Menggunakan Metode Supply Chain Operation Reference (Scor) Dan House Of Risk (Hor) Pada Pt Indo Pusaka Berau," *Sebatik*, Vol. 27, No. 2, Pp. 535–545, Dec. 2023, Doi: 10.46984/Sebatik.V27i2.2415.
- [9] Z. Amarta, J. Dewi, And M. 'Rifah, "Strategi Mitigasi Risiko Supply Chain Pengadaan Bahan Baku Kayu Pada Industri Furnitur," *Benefit J. Manaj. Dan Bisnis*, Vol. 8, No. 2, Pp. 216–228, Dec. 2023, Doi: 10.23917/Benefit.V8i2.2701.
- [10] A. Pramuditya, A. Y. Pramuditya, And P. D. Karningsih, "Manajemen Risiko Supply Chain Koperasi Kopi Wonosalam Jombang Dengan Metode House Of Risk (Hor)," *J. Tek. Its*, Vol. 13, No. 1, Pp. E7–E14, May 2024, Doi: 10.12962/J23373539.V13i1.128038.
- [11] I. Masudin, A. F. Madani, R. W. Wardana, D. P. Restuputri, S. Sarifah, And R. Shariff, "Assessment And Risk Mitigation Of Halal Food Supply Chain Using Interpretative Structural Modeling (Ism) And House Of Risk (Hor)," *Semarak Int. J. Transp. Logist.*, Vol. 2, No. 1, Pp. 15–34, Mar. 2025, Doi: 10.37934/Sijtl.2.1.1534b.
- [12] A. H. Ratnaningtyas, Qurtubi, E. Kusrini, And R. Fariza, "Analysis Of Halal Supply Chain Management In Fried Chicken Restaurant Using Supply Chain Operation Reference (Scor) 12.0," *J. Ind. Eng. Halal Ind.*, Vol. 3, No. 1, Pp. 20–25, Jul. 2022, Doi: 10.14421/Jiehis.3527.
- [13] J. Akmal Hadi, M. Ayu Febrianti, G. Amanda Yudhistira, And J. Teknik Industri, "Identifikasi Risiko Rantai Pasok Dengan Metode House Of Risk (Hor)," *Performa Media Ilm. Tek. Ind.*, Vol. 19, No. 2, Pp. 85–94, Oct. 2020, Doi: 10.20961/Performa.19.2.46388.
- [14] Y. A. Walansendow *Et Al.*, "Persepsi Konsumen Terhadap Harga, Kualitas, Dan Risiko Di Resto Tuna House Mega Mas Manado," *Mamen J. Manaj.*, Vol. 1, No. 4, Pp. 537–544, Oct. 2022, Doi:

- 10.55123/Mamen.V1i4.1045.
- [15] M. B. Ghozali, H. Hidayat, And Y. P. Negoro, "Risk Analysis On The Production Process By Applying The House Of Risk Method, Ahp, And Scor Approach At Pt Xyz," *G-Tech J. Teknol. Terap.*, Vol. 8, No. 4, Pp. 2365–2378, Oct. 2024, Doi: 10.70609/Gtech.V8i4.5051.
- V. Adelia And W. Widiasih, "Strategi Mitigasi Risiko Pada Produksi Surimi Beku Dengan Metode House Of Risk (Hor) Dan Scor Model," *J. Senopati Sustain. Ergon. Optim. Appl. Ind. Eng.*, Vol. 5, No. 1, Pp. 56–68, Oct. 2023, Doi: 10.31284/J.Senopati.2023.V5i1.4575.
- [17] W. Novia Briliani *Et Al.*, "Pengukuran Risiko Pada Rantai Pasok Tempe Menggunakan Elemen Supply Chain Operation Reference (Scor) Dan Metode House Of Risk (Hor)," *J. Sci. Res. Dev.*, Vol. 5, No. 2, Pp. 1231–1246, Dec. 2023, Doi: 10.56670/Jsrd.V5i2.874.
- [18] S. Kurniawan, D. Marzuky, ; Rio Ryanto, And V. Agustine, "Risk And Supply Chain Mitigation Analysis Using House Of Risk Method And Analytical Network Process," Vol. 22, No. 2, Pp. 123–136, 2021, Doi: 10.21512/Tw.V22i2.7056.
- [19] B. Prasetyo, W. Eka Yulia Retnani, And N. Laily Muhimmatul Ifadah, "Analisis Strategi Mitigasi Risiko Supply Chain Management Menggunakan House Of Risk (Hor)," Vol. 16, No. 2.
- [20] M. Rozudin And N. A. Mahbubah, "Implementasi Metode House Of Risk Pada Pengelolaan Risiko Rantai Pasokan Hijau Produk Bogie S2hd9c (Studi Kasus: Pt Barata Indonesia)," *Jisi J. Integr. Sist. Ind.*, Vol. 8, No. 1, Pp. 1–11, Feb. 2021, Doi: 10.24853/Jisi.8.1.1-11.
- [21] E. Kusrini, K. Nisa Safitri, A. Fole, And P. Teknik Industri, "Mitigasi Resiko Di Distribusi Sustainable Supply Chain Management Menggunakan Metode House Of Risk (Hor)," *Integr. J. Ilm. Tek. Ind.*, Vol. 7, No. 1, Pp. 14–23, Sep. 2022, Doi: 10.32502/Js.V7i1.4348.
- [22] Z. D. Cahyani, S. R. W. Pribadi, And I. Baihaqi, "Studi Implementasi Model House Of Risk (Hor) Untuk Mitigasi Risiko Keterlambatan Material Dan Komponen Impor Pada Pembangunan Kapal Baru," *J. Tek. Its*, Vol. 5, No. 2, Dec. 2023, Doi: 10.12962/J23373539.V5i2.16526.
- [23] S. Alam, R. R. Putri, And S. Hartini, "Mitigating Supply Chain Risks In The Traditional Beverage Industry With The House Of Risk (Hor) Method," *J. Ilm. Tek. Ind.*, Pp. 17–30, Jun. 2025, Doi: 10.23917/Jiti.V24i01.8157.
- [24] S. Kinasih And T. Immawan, "Manajemen Risiko Rantai Pasok Telur Ayam Ras Dengan Menggunakan Metode House Of Risk (Hor) Dan Iso 31000 Di Kabupaten Pesawaran," *J. Impresi Indones.*, Vol. 4, No. 6, Pp. 1935–1949, Jun. 2025, Doi: 10.58344/Jii.V4i6.6654.
- [25] O. Andanu, H. A. Sangadah, S. Wulandari, And F. P. Putri, "Pengukuran Risiko Dan Mitigasi Risiko Menggunakan Hor (House Of Risk) Pada Industri Pengolahan Buah Pisang," *J. Teknol. Agro-Industri*, Vol. 11, No. 2, Pp. 125–139, Nov. 2024, Doi: 10.34128/Jtai.V11i2.202.
- [26] B. H. Purnomo, B. Suryadharma, And R. G. Al-Hakim, "Risk Mitigation Analysis In A Supply Chain Of Coffee Using House Of Risk Method," *Ind. J. Teknol. Dan Manaj. Agroindustri*, Vol. 10, No. 2, Pp. 111–124, Aug. 2021, Doi: 10.21776/Ub.Industria.2021.010.02.3.
- [27] V. Kartikasari, M. N. Odja, And N. M. Wiati, "Manajemen Risiko Bisnis Kafe Pada Bauran Pemasaran Dengan House Of Risk (Hor)," *J. Ind. View*, Vol. 7, No. 1, Pp. 15–24, Jul. 2025, Doi: 10.26905/Jiv.V7i1.15702.
- [28] A. Padhil, N. Chairany, A. Ahmad, H. Ramly, R. Malik, And A. Saleh, "Supply Chain Risk Analysis In Kub Ik Mataram Macoa With House Ofrisk (Hor)," *J. Ind. Eng. Manag.*, Vol. 6, No. 2, 2021, Doi: 10.33536/Jiem.V6i2.942.
- [29] F. A. Pulungan, "Analisis Risiko Halal Pada Online Delivery Food Menggunakan Pendekatan House Of Risk (Hor)," 2025, Accessed: Sep. 14, 2025. [Online]. Available: Https://Dspace.Uii.Ac.Id/Handle/123456789/56731
- [30] D. Maulina, H. Sastra, And M. Dirhamsyah, "Analysis Of Supply Chain Risk Control In Aceh Nut Work Using The House Of Risk Method Approach (Case Study: Nutmeg Oil Industry In South Aceh Regency)," *J. Inotera*, Vol. 8, No. 2, Pp. 433–442, Nov. 2023, Doi: 10.31572/Inotera.Vol8.Iss2.2023.Id427.
- [31] S. Y. Ananta, N. D. Prahesti, And N. N. Qisthani, "Pengembangan Strategi Mitigasi Risiko Rantai Pasok Maggot Berbasis House Of Risk Di Industri Pengolahan Sampah Organik," *J. Integr. Syst.*, Vol. 8, No. 1, Pp. 59–74, Jun. 2025, Doi: 10.28932/Jis.V8i1.10482.